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†Department of Applied Physics, Royal Institute of Technology, Albanova University Centre, Roslagstullsbacken 21, 106 91
Stockholm, Sweden
‡Walter Schottky Institut and Physik Department, Technische Universitaẗ München, 85748 Garching, Germany
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ABSTRACT: Photonic quantum technologies call for scalable
quantum light sources that can be integrated, while providing
the end user with single and entangled photons on demand.
One promising candidate is strain free GaAs/AlGaAs quantum
dots obtained by aluminum droplet etching. Such quantum
dots exhibit ultra low multi-photon probability and an
unprecedented degree of photon pair entanglement. However,
different to commonly studied InGaAs/GaAs quantum dots
obtained by the Stranski−Krastanow mode, photons with a
near-unity indistinguishability from these quantum emitters
have proven to be elusive so far. Here, we show on-demand generation of near-unity indistinguishable photons from these
quantum emitters by exploring pulsed resonance fluorescence. Given the short intrinsic lifetime of excitons and trions confined
in the GaAs quantum dots, we show single photon indistinguishability with a raw visibility of V (95.0 )%raw 6.1

5.0= −
+ , without the

need for Purcell enhancement. Our results represent a milestone in the advance of GaAs quantum dots by demonstrating the
final missing property standing in the way of using these emitters as a key component in quantum communication applications,
e.g., as quantum light sources for quantum repeater architectures.
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Most applications in photonic quantum technologies rely
on clean quantum interference of deterministically

generated single and entangled photons. Quantum indis-
tinguishability is a crucial ingredient for the creation of higher
N00N states,1,2 quantum teleportation3 and swapping
operations,4 boson-sampling,5,6 and photon-based quantum
simulations.7 An ideal quantum light source thus needs to emit
photons on demand, with high purity and near-unity
indistinguishability as well as being scalable and interconnected
with different quantum systems. Semiconductor quantum dots
are proving to be the best sources that fulfill these
requirements,8 delivering ultra bright sources of on-demand
single photons at high rates compatible with photonic circuitry.
Recently, GaAs quantum dots obtained by the infilling of
nanoholes produced by local droplet etching9 have emerged to
be one of the most promising deterministic solid-state
quantum light sources, reporting the lowest multi-photon
probability10 and the highest degree of polarization entangle-
ment11 while also being the brightest entangled photon pair
source reported.12 Entangled photons from these quantum
dots have also been used to implement quantum tele-

portation13 and entanglement swapping protocols,14 thus
proving their potential for quantum network applications.
Furthermore, their short intrinsic lifetime enables high-
repetition rate single-photon sources and, together with the
high symmetry of the quantum dots, results in improved
entanglement fidelities.11 Another advantage of these quantum
dots is that they have reduced strain gradients compared to
commonly studied dots obtained by the Stranski−Krastanow
growth mode and are expected to have long nuclei ensemble
spin coherence, promising for quantum-dot-based quantum
memories.15 Additionally, their emission wavelength range
makes them suitable for hybrid quantum photonic technolo-
gies since they can be tuned into resonance with quantum
memories, e.g. rubidium atoms.16,17 However, near-unity
indistinguishable photons, a crucial element for photonic
quantum technologies, was missing from this type of quantum
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dots until now. Strong charge fluctuations at the vicinity of the
quantum dot,18,19 induced by the droplet growth method20

and faster phonon-induced pure dephasing21 and zero-phonon
broadening22 were suspected to be the main causes of the
lower quantum interference visibility for these quantum
emitters. In this letter, we apply cross-polarized pulsed
resonance fluorescence to show that quantum dots derived
from droplet etching do not suffer from additional dephasing
mechanisms at short time scales and exhibit near-unity
indistinguishability of on-demand generated single photons.
Remarkably, high quantum interference visibility values of
V (95.0 )%raw 6.1

5.0= −
+ are achieved without the need of Purcell

enhancement using microcavities.23−25 Instead, we capitalize
on the intrinsically short lifetime of the excited states of these
quantum emitters.26

For pulsed resonant s-shell excitation,27 a polarization
suppression setup was constructed similar to that in ref 28
but with the second polarizing beam splitter (PBS) replaced by
a nanoparticle linear film polarizer, as illustrated in Figure 1 a.
The sample was mounted in a low vibration closed-cycle
cryostat and cooled to 5 K. For excitation, a tunable, linearly
polarized laser was used with a repetition rate of 80 MHz and
pulse duration of 5.0 ps after sending the pulse through a pulse
slicer. The excitation beam was directed onto the sample via
the polarizing beam splitter, through an objective with
NA 0.81= , and focused onto the quantum dot of interest
using a solid immersion lens (SIL), directly attached to the
sample surface. The signal was collected through the same
optics in a confocal geometry and separated from the
backscattered excitation laser by the polarizing beam splitter
and a linear polarizer oriented perpendicular to the laser
polarization. Further improvement of the laser suppression was
achieved by spatial filtering since a small portion of the

backscattered laser has a component perpendicular to the
original polarization with a four-leaf clover patterned beam
profile.29

To perform photoluminescence measurements, the signal
was coupled through a spectrometer onto a silicon CCD. For
correlation measurements, the resonance fluorescence signal
was further filtered with a home-built transmission spectrom-
eter having a bandwidth of 19 GHz and an end-to-end
efficiency exceeding 60%. Second-order intensity correlation
measurements were carried out with a Hanbury−Brown and
Twiss type setup realized with a fiber coupled 50:50 beam
splitter connected to two superconducting nanowire single
photon detectors (SNSPD) with efficiencies of 50% and 60%, a
timing jitter of 20 and 30 ps, and dark count rates of 0.006 and
0.017 dcts/s. The detection events are recorded in a timetag
file along with laser excitation events and analyzed with our
Extensible Timetag Analyzer (ETA) software.30 To determine
the indistinguishability of two consecutively emitted photons,
two-photon interference was measured in a Hong−Ou−
Mandel (HOM) type experiment. In order to interfere, these
photons must impinge on a beam splitter with excellent spatial
and temporal overlap. The temporal overlap is achieved by
sending the signal into an unbalanced fiber-based Mach−
Zehnder interferometer with a path-length difference of 2 ns.
The two output ports of the Mach−Zehnder interferometer
are connected to a SNSPD each. Depending on the paths the
photons take, they can arrive on the beam splitter
simultaneously or with a time delay of 2 or 4 ns, resulting in
the characteristic quintuplet for Hong−Ou−Mandel measure-
ments31 in the histogram. The temporal overlap of the photons
on the second beam splitter is ensured by splitting the
excitation pulse into two identical pulses using another
unbalanced Mach−Zehnder interferometer with variable

Figure 1. (a) The modular setup consisting of laser excitation with delay line, the confocal microscopy setup with polarization suppression, the
transmission spectrometer, the Hanbury-Brown and Twiss setup (HBT), and the Hong−Ou−Mandel setup (HOM). BS, beam splitter; BD, beam
dump; TG, transmission grating; SNSPD, superconducting nanowire single photon detector; Pol, polarizer; PBS, polarizing beam splitter; QWP,
quarter waveplate; SIL, solid immersion lens. (b) Schematic illustration of the sample structure. (c) Spectrum of QD1 under non-resonant
excitation.
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delay. This delay is precisely tuned to the fixed fiber delay in
the Hong−Ou−Mandel setup by measuring the interference of
overlapping short laser pulses using the same detectors as for
all the correlation measurements. For the best possible time
resolution, unsliced laser pulses with a pulse duration of 1.94
ps were used.
The GaAs quantum dot sample investigated in this work was

grown by molecular beam epitaxy using the aluminum droplet
etching technique. The quantum dot layer was embedded in a
λ-cavity made of Al Ga As0.4 0.6 (123 nm) with 9.5 pairs of
bottom and 2.5 pairs of top distributed Bragg reflectors (DBR)
consisting of Al Ga As0.95 0.05 /Al Ga As0.2 0.8 /4λ -thick layers, as
depicted in Figure 1 b. The structure was finished by a 4 nm
thick protective GaAs layer. The Al-droplet etching method
allows the growth of highly symmetric quantum dots with a
low fine structure splitting (FSS).32 This sample structure
shows an extraction efficiency of 20.0 3.2± % into the first
lens for a quantum dot well-positioned under the SIL.
In Figure 1 c we show the spectrum of QD1 subject to

pulsed non-resonant excitation at a wavelength of 781 nm. The
neutral exciton (X), emitting at 788.73 nm, is isolated from the
rest of emission lines at longer wavelengths, which are
attributed to electron-hole recombination in the presence of
additional carriers in the quantum dot which stem from nearby
confined states due to the weak confinement in shallow
quantum dots.33 The trion (T) transition corresponds to the
peak at 790.02 nm. To resonantly excite an s-shell transition
(X or T), we tune the energy of the excitation laser to the
transition energy, ideally resulting in photoluminescence only
from this specific transition. Furthermore, the dephasing due to
interactions with phonons and nearby trapped charge carriers

is reduced.34 To address the electric environment of the dot,
we additionally illuminate the sample with a low intensity
white light source.35,36 This results in a very clean spectrum
with only one prominent line of the exciton transition and
minor contribution of less than 2% from the trion transition as
shown in a semi-logarithmic plot in Figure 2 a.
To show that this excitation scheme addresses the quantum

dot coherently, we performed power-dependent pulsed
resonance fluorescence measurements. In Figure 2 b, Rabi
oscillations of the integrated intensity of the neutral exciton
transition as a function of the excitation pulse area are shown.
By exciting the quantum dot with a power corresponding to a
pulse area of π, the population of the two-level system of the
quantum dot is maximally inverted, preparing the quantum dot
in the excited state. The procedure used to fit the data is
explained in the Supporting Information. We extract a
population probability for the neutral exciton state of 85%
under π-pulse excitation. For all further measurements, the
quantum dot is excited with a π-pulse.
The second-order intensity correlation function shown in

Figure 2 c shows nearly background free single photon
emission. By calculating the ratio of the area of the center peak
and average area of eight side peaks in a time window of 3.2 ns
each, a measured degree of second-order coherence of

g (0) (2.5 0.2) 10(2) 3= ± × − is determined. We attribute
the deviation from 0 solely to re-excitation37 and conclude
that there is negligible residual excitation laser present in the
correlation measurement.
Figure 2 d shows the lifetime measurement of the resonantly

excited neutral exciton in a semi-logarithmic plot. The
exponential decay is observed with a periodic modulation.38

Figure 2. Characterization of the neutral exciton under pulsed resonant s-shell excitation. (a) Resonance fluorescence spectrum in a semi-
logarithmic plot. (b) Excitation laser power-dependent Rabi oscillation up to a pulse area of 5π. From our fit we extract an occupation probability of

85% under π-pulse excitation. (c) Second-order intensity correlation histogram yielding g (0) (2.5 0.2) 10(2) 3= ± × − (d) Semi-logarithmic plot of
the lifetime measurement with oscillations due to the fine structure splitting. The fit gives a lifetime of 196 2± ps and a fine structure splitting of
7.44 0.05± μeV.
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Due to the exchange interaction between the electron and hole
spins, the degeneracy of the exciton states of the quantum dot
is lifted, leading to two linearly cross-polarized fine structure
(FS) states with an energy splitting of EFSS. During excitation,
the spin of the exciton state is determined by the polarization
of the excitation pulse.39,40 Then, the spin starts precessing on
the equator of the Bloch sphere, oscillating between the two
orthogonal fine structure states. The polarization of the
emitted photon is set by the spin at the time of the
recombination. Since one polarization component is sup-
pressed by the polarizers in our setup, the intensity of the

detected signal oscillates with a frequency
E

h
FSSν = .41 The data

is modeled with a fit explained in the Supporting Information,
which yields a lifetime of 196 2± ps and a fine structure
splitting of 7.44 0.05± μeV.
In order to point out similarities with and differences to the

neutral exciton, we investigate the resonantly excited charged
exciton as well. Figure 3 a shows the spectrum of the trion of
QD1 under pulsed resonant excitation. We observe an
additional line close to the trion transition with 30≈ times
lower intensity, which might be a higher charge state emitting
after a second capture process. Similar to the neutral exciton,
we observe clear Rabi oscillations as a function of the
excitation pulse area, as shown in Figure 3 b, and a maximum
population inversion probability of 86% under π-pulse
excitation. The second-order intensity correlation function
yields a measured degree of second-order coherence of
(6.7 0.4) 10 3± × − , as shown in Figure 3 c, confirming that
the laser suppression is very good. In Figure 3 d we show a
semi-logarithmic plot of a lifetime measurement. A single

exponential fit gives a lifetime of 236 2 ps± . As opposed to
the lifetime measurement of the neutral exciton in Figure 3 d,
this measurement shows no quantum beats, due to the lack of
fine structure splitting of the trion state.42

Having confirmed low multi-photon emission probability for
both neutral and charged excitons under π-pulse resonant
excitation, we continue to investigate the indistinguishability of
consecutively emitted photons using a two-photon interference
measurement, as described above. In Figure 4 a and b the
center peak quintuplet for two-photon interference measure-
ments of the neutral exciton and trion of QD1 are shown. The
relative peak heights originate from different combinations of
long and short paths in the Mach−Zehnder interferometer two
consecutive photons can take. In the Hong−Ou−Mandel
measurement of the neutral exciton, the same oscillations as in
the lifetime measurements are visible.

In the limit of g (0) 0(2) = , the visibility of two-photon
interference can be calculated from the area of the three center

peaks A1,2,3 by V 1 A
A A
2 2

1 3
= − ×

+ , where V 100%= corresponds

to perfectly indistinguishable photons.31 To calculate the peak
area of the three center peaks, the coincidence events are
summed up in time windows which are individual for every
transition (see details in the Supporting Information). The
uncorrected visibilities for QD1 are V 94.9%raw = with a
statistical error 5.1%+ and 6.4%− for the neutral exciton and
V (88.5 3.3)%raw = ± for the trion. To compensate for
imperfections in the setup, we measure the classical
interference fringe visibility with a narrow continuous wave
diode laser to be (97.5 0.1)%± , which yields the upper
measurable bound of the visibility in this setup. In general, we

Figure 3. Characterization of the trion under pulsed s-shell resonant excitation. (a) Resonance fluorescence spectrum in a semi-logarithmic plot.
The origin of the ≈30× less intense line is discussed in the main text. (b) Rabi oscillation up to a pulse area of 3π. (c) Second-order intensity

correlation histogram yielding g (0) (6.7 0.4) 10(2) 3= ± × − (d) Semi-logarithmic plot of the lifetime measurement fitted with a single exponential
decay giving us a lifetime of 236 2 ps± .
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are able to show very high indistinguishability visibilities by
performing the Hong−Ou−Mandel measurement on further
dots, as shown in Figure 4 c, d, and f. Here we obtain a
visibility of V (92.6 5.1)%raw = ± for the neutral exciton,
V (89.1 3.7)%raw = ± f o r t h e t r i on o f QD2 , and

V (95.0 )%raw 6.1
5.0= −

+ for the trion of QD3. This value is the
highest obtained visibility for on-demand sources without
Purcell enhancement or more elaborate excitation techni-
ques.43 We would like to note that fitting the Hong−Ou−
Mandel data, instead of summing up the data in specified time
windows, very often overestimates the two-photon interference
visibility, in particular if the data were collected with low
timing resolution. Especially when the low time resolution is
masking quantum beats and the dip at zero time delay, fitting
can wrongly increase the visibility and even lead to unphysical
results, i.e., visibilities above 100%. This result is even
independent of the used fit function (see details in the
Supporting Information). We measure the line width of the
trion transition of QD3 by slowly scanning a Fabry−Peŕot

interferometer with a resolution of 28 MHz over the line and
recording the signal on a SNSPD. Fitting the data with a
Gaussian peak provides a line width of 7.73 0.18 GHz± and is
shown in Figure 4 e. Considering a lifetime of 228 ps, we show
that the line width is a factor of 10 larger than the Fourier limit.
As we are still measuring a very high HOM visibility for this
transition, this indicates negligible spectral wandering on short
time scales.
We point out that our two-photon interference visibility

value of V (95.0 )%6.1
5.0= −

+ is the highest raw value measured for
any on-demand source without a micro-cavity and marks an
important milestone for quantum dots derived from droplet
etching. Near-unity indistinguishability was the last missing
quantum optical property to put GaAs quantum dots on the
horizon for future quantum communication and quantum
information processing applications. On the basis of our
results, we foresee that photonic structures other than cavities,
e.g., waveguides, trumpets, and nanowires44,45 to enhance light
extraction efficiency from solid-state emitters, can be used to

Figure 4. Hong−Ou−Mandel measurements under resonant s-shell excitation for the (a) neutral exciton of QD1 V( 94.9 %)6.4
5.1= −

+ , (b) trion of
QD1 V( 88.5 3.3%)= ± , (c) neutral exciton of QD2 V( 92.6 5.1%)= ± , (d) trion of QD2 V( 89.1 3.7%)= ± , and (f) trion of QD3
V( 95.0 %)6.1

5.0= −
+ . The visibilities are calculated by summing up the peak areas of the three center peaks. The method is explained in more detail in

the Supporting Information; (e) line width of the trion of QD3 with a Gaussian fit ( 7.73 0.18 GHz)νΔ = ± .
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achieve even higher levels of indistinguishability without the
need of Purcell enhancement.
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