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Abstract: In this work, we demonstrate reconfigurable frequency manipulation of quantum
states of light in the telecom C-band. Triggered single photons are encoded in a superposition
state of three channels using sidebands up to 53 GHz created by an off-the-shelf phase modulator.
The single photons are emitted by an InAs/GaAs quantum dot grown by metal-organic vapor-
phase epitaxy within the transparency window of the backbone fiber optical network. A
cross-correlation measurement of the sidebands demonstrates the preservation of the single
photon nature; an important prerequisite for future quantum technology applications using the
existing telecommunication fiber network.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum information science is an interdisciplinary field wherein quantum mechanics sets rules
for logical bits (qubits), gates and interconnects [1]. Transferring quantum information between
stationary nodes is one of the requirements to scale the field beyond isolated locations [2].
Qubit teleportation protocols [3–6] or direct state transfer methods [7, 8] between two nodes

are commonly built based on single photons, so called "flying qubits". Photons at a wavelength of
1.55 µm [9] (C–band) can travel over large distances in optical fibers and are ideal candidates to
distribute entanglement or exchange quantum information between distant network nodes, known
as "quantum internet" [2, 10]. The advantage of pre–existing infrastructure for optical classical
communication networks [11] leads to faster and cheaper adoption of quantum communication.

Semiconductor quantum dots (QDs) are promising sources for flying qubits at 1.55 µm [12–14],
due to the deterministic generation of single photons [15] and polarization entangled photon
pairs [16,17]. The quantum dot growth via metal–organic vapor–phase epitaxy enables industrial
large–scale fabrication in future photonic quantum technology applications. By combining this
industry grade growth technique, used for example in LED manufacturing, with nanofabrication
methods, QDs establish themselves as scalable, integratable [18] and tunable sources for the
C–band [19]. As compared to the standard InP–based materials for this wavelength range, the
choice of InAs/GaAs quantum dots has several advantages regarding the optical properties of the
quantum dots and due to the possibility to grow lattice-matched DBRs with high refractive index
contrast materials, the possibilities for cavity–enhanced emission enabling ultra-high repetition
rates [13, 20].

Building up multi–node quantum networks requires multiple sources which need to be tuned in
resonance to one another within their natural linewidth or wavelength-multiplexed in the same fiber
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for enhanced quantum communication bandwidth and multiple access options. Thus, dynamically
manipulating single photon properties such as frequency [21], line shape [22] or temporal
shape [23,24] is a key requirement for quantum information science. Although, attenuated coherent
carriers with sidebands were proposed and used for Quantum Key Distribution [25], moving to
flying qubits with high purity number states enables new applications, e.g. phase–modulated
single photons are suggested for frequency–based linear optical quantum computing [26] and
frequency-based higher order entangled states [27]. Constructing a flying qubit Hilbert space
in frequency domain is bound to boost quantum data communication bandwidth, following the
steps of classical optical communication where generally a combination of time-division coding
and frequency-division coding is used for high data-rate applications. The possible on-demand
generation [15] of single photons with InAs/GaAs QD coupled with the frequency coding [28]
we demonstrate here, using off-the-shelf components, makes the platform ideal for long distance
and high bandwidth quantum communication.

Paudel et al. [28] recently demonstrated the preservation of indistinguishability of near-infrared
photons emitted by a quantum dot through phase modulation. We extend this result and move to a
triggered QD system with an emission in the standard telecom 1.55 µm band. We experimentally
demonstrate triggered generation, manipulation and transmission of single photons in the
telecom C–band. We create a superposition state spread over three adjacent channels (26.5 GHz
separation), which we then transfer over data–center distance (1.6 km). The transmission link
consists of an InAs/GaAs quantum dot source, an off-the-shelf phase modulator and telecom
single mode fibers (SMF–28). We show that the sideband photons generated with the phase
modulator follow the properties of the unmodulated photons emitted by a single QD. Our work
demonstrates the integration of novel single photon sources with mature telecom technology,
allowing large–scale quantum information processing and networking in the 1.55 µm band.

8 K

spectral selection

phase modulator

cryostat

NF

26.5 GHz
RF

BS

TG

SNSPD

80 MHz

1.6 km

X*

X
XX

Wavelength (nm)

1

0
1542 1544 1546 1548

C
ou

nt
s 

(a
rb

. u
ni

ts
)

1

0 C
ou

nt
s 

(a
rb

. u
ni

ts
)

Wavelength (nm)
1542 1544 1546 1548

C
ou

nt
s 

(a
rb

. u
ni

ts
)

1

0
1542 1544 1546 1548

Wavelength (nm)

1

0
1542 1544 1546 1548

Wavelength (nm)

C
ou

nt
s 

(a
rb

. u
ni

ts
)

a) b)

c) d)

Fig. 1. The setup with spectra at different positions in the experiment. Single photons of
a MOVPE–grown InAs/GaAs QD in a closed–cycle cryostat (a) are fiber coupled through
a confocal microscope. (b) A notch–filter (NF) is used to reflect one emission line of
the quantum dot. (c) The reflected single photons are sent to a phase modulator driven
with 26.5 GHz, (d) spectrally filtered using a transmission spectrometer and connected to
superconducting nanowire single photon detectors (SNSPD).
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2. Experiment

Our experimental setup is described in Fig. 1. The source used in the experiment is based on
MOVPE grown InAs quantum dots on a GaAs substrate. A distributed Bragg reflector consisting
of 20 pairs of AlAs/GaAs is used for improved extraction efficiency and a metamorphic buffer
layer made from GaAs with increasing In content is providing stress–release for the InAs quantum
dots and, thus, allowing emission in the telecom C-band. A more detailed description of the
sample can be found in [19]. During the experiment the sample is placed in a close–cycle cryostat
with a base temperature of 8 K, and a microscope objective (0.85 NA) as part of our confocal
microscopy setup. The quantum dot is excited at 1470 nm with 2 ps pulses and a repetition rate
of 80 MHz. We expect our combined extraction efficiency and setup collection efficiency to be
on the order of 10−4. Based on spectral measurements, only a specific quantum dot emission
line is selectively reflected from a tunable notch filter with a spectral bandwidth of 0.7 nm and a
rejection of 40 dB. The filtered single photons are then coupled in an optical fiber connected to
the modulation setup. We use a standard LN phase modulator (Sumitomo T.PM1.5–40) with a
Vπ = 5 V to create the sideband photons. The modulator is driven at 5 Vpp to create sidebands at
a spectral distance of 26.5 GHz. The modulated photons are sent through a 1.6 km long SMF–28
fiber (0.2 dB km−1 attenuation) before the generated sidebands are separated from the carrier
using a home–built transmission spectrometer [29]. After passing through the transmission
grating (TG) the two sidebands (spectrally separated by 0.4 nm) are coupled into two optical
fibers that are connected to superconducting nanowire single photon detectors (15 % and 25 %
efficiency with 30 dark counts per second). To record the correlations between the single photon
sidebands a correlator (50 ps time jitter between channels) is used. Additionally, a spectrometer
(750 mm focal length, 830 l/mm grating) and an InGaAs array are used for the spectral analysis.
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Fig. 2. (a) Auto–correlation measurement on the photons emitted into the charged exciton
line X* at 1547.21 nm filtered by the notch–filter yielding a multi–photon probability of
g(2)(0) = 0.11 ± 0.03. (b) Cross–correlation measurement between the two sidebands at
1546.99 nm and 1547.42 nm yielding a multi–photon probability of g(2)(0) = 0.16 ± 0.06.
The open circles represent the measurement data, the solid lines correspond to a fit to the
data. The presented data is not background subtracted and normalized to the peak height
provided by the fit.

3. Results

In a QD, the emission is related to the particles involved in the recombination process. A
systematic study, including power and polarization dependent measurements [19], was performed
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to identify three optical transitions X, XX, and X* in the spectra. After excitation, the s–shell
of our source can be filled with two electrons in the conduction band and two holes in the
valence band. This can result in the emission of a biexciton photon via the recombination of
one electron–hole pair, labeled XX. The remaining electron and hole pair in the QD recombines
to emit an exciton photon, labeled X. Additionally, the QD can trap a single electric charge in
the presence of an electron–hole pair, the three-particle complex produces a trion, labeled X*.
A spectrum of our source is shown in Fig. 1(a). All spectra are normalized to their peak value.
We select the trion (X*) line emitted by the quantum dot by reflecting only this wavelength
(1547.21 nm) on the tunable notch filter. The filtered spectrum is depicted in Fig. 1(b). We
would like to note, that the common insertion loss of commercial telecom equipment on the order
of at least 3dB per element, which can be easily compensated in classical communication, is a
significant challenge for experiments with single photons.
The multi-photon emission probability of our source is measured by performing a Hanbury

Brown and Twiss measurement. To this end, we send the filtered X* photons onto a beam
splitter and measure the difference in arrival time between the beam splitter outputs with two
superconducting nanowire single photon detectors. This yields the histogram shown in Fig. 2(a).
The absence of the peak at zero time delay demonstrates triggered single photon emission in

the telecom C-band with low multi–photon probability of g(2)(0) = 0.11 ± 0.03. The zero delay
multi-photon probability g(2)(0)–value is extracted by fitting the correlation peaks and comparing
the area between the peak at zero time delay and the side peaks. Using our current excitation
method, we can extract the emission time which sets the maximum duty cycle of our source
to be 1.37 ns ± 50 ps, where the error is assumed from the maximum timing uncertainty of our
measurement setup. This value can be drastically reduced by performing resonant excitation of
specific optical transitions [30], as any non-radiative contributions to the rise time are eliminated
in this case. The rise and decay time are convoluted for non-resonant excitation, which can make
the decay time appear artificially longer. Furthermore, the quantum dot lifetime can also be
reduced by including the emitter into optical cavity structures, as demonstrated in [31, 32] for
quantum dots grown by metal-organic vapor-phase epitaxy.
The ideal trion state for our experiment after the modulation would be a superposition state

of three frequency channels |state〉 = 1/
√

2 |carrier〉 + 1/2 |carrier + f 〉 − 1/2 |carrier − f 〉. We
approximate this state using phase modulation with a single frequency that creates side-bands
at multiples of f following the ratio of Bessel functions of the first kind. Therefore we are
interested into the first order sidebands and want to minimize the photons lost in higher order
sidebands. Using single–frequency phase modulation of 26.5 GHz, and a modulation index of
0.41π, we shift 54.6 % of the photons into the higher (27.3 %) and lower (27.3 %) sidebands
(1547.21 nm ± 26.5 GHz) and loose 7.1 % to higher order sidebands (Fig. 1(c)). The separation
of the sidebands is tunable between 0 and 26.5 GHz (Fig. 3) and can be aligned to a chosen
channel spacing. This separation is mainly limited by the signal generator (26.5 GHz) and the
modulator (40 GHz). Recent demonstrations by Mercante et. al. show modulations speeds up
to 500 GHz or ±4 nm at 1550 nm [33], demonstrating the potential of this standard technique
applied to quantum states of light.
We include 1.6 km of optical fiber between the phase modulator and the spectral filtering of

the two sidebands and demonstrate our setup can bridge intra–data center distances. Spectral
filtering with the transmission spectrometer allows to separate the sidebands from each other, as
shown in Fig. 1 (d). The emission time setting the maximum duty cycle of the photons in lower
and upper sideband are measured to be 1.39 ns ± 50 ps and 1.39 ns ± 50 ps respectively. This
value is the same as for unmodulated photons within our measurement accuracy. To determine
whether our modulation technique is altering the single photon emission of the quantum dot, we
perform a cross–correlation measurement between the two sidebands. After spectrally separating
the sidebands from each other we measure the time difference between the arrival of the photons
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Fig. 3. Tunable modulation of single photon carriers between 0 and 26.5 GHz creating
upper and lower sidebands with variable separation. The emission of the carrier line is at
1547.21 nm. The data is recorded with a spectral resolution of 35 pm or 4.37 GHz. The
modulation index is indicated on the right-hand side of the graph.

in the sidebands. As they are generated from single photons, the peak at zero time delay should
still vanish as in the initial measurement. The two sidebands show a correlation probability of
g(2)(0) = 0.16 ± 0.06, demonstrating single photons in both sidebands.

4. Conclusion

We showed the use of a triggered single–photon source based on MOVPE–grown InAs/GaAs
quantum dots with standard telecom equipment in the C-band bridging 1.6 km distance. The
widely available equipment, already installed infrastructure and the low losses in fibers highlight
the importance of this wavelength range for quantum communication. We created single photons
with tunable sidebands (up to 53 GHz separation) with a multi–photon emission probability in
the sidebands of g(2)(0) = 0.16 ± 0.06. This can be seen as a single photon source multiplexed
on several channels or can be used as a resource for a frequency based qubit. With standard
IQ modulators, a similar technique allows to shift the carrier [21] to fine-tune the overlap with
another source.
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