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ABSTRACT: The spatial structure of light with Orbital Angular Momentum, or “twisted
light”, closely resembles the shape of atomic wave functions. It could therefore make
symmetry-forbidden transitions possible in quantum dots, or “artificial atoms”. However, the
vanishing intensity in the center of an OAM beam usually makes this effect weak. Here we
show a plasmonic approach to focus OAM light to subwavelength dimensions using metallic
nanoscale resonant optical antennas. This allows to increase the field intensity of OAM light at
the typical dimensions of quantum dots to an intensity larger than a regular Gaussian beam,
which corresponds to increasing the interaction strength by 3 orders of magnitude.
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The intrinsic angular momentum of light, associated with its
polarization, has been known for a long time and can

result in a measurable mechanical torque.1 However, by
manipulating the spatial structure of a light-beam, for example
by using holograms2 or spiral phase-plates,3 light can also be
made to “rotate” and carry an additional component of orbital
angular momentum4,5 (OAM). Not only can this OAM exert a
torque,6 it is also a fundamental property at the single-photon
level, associated with an integer multiple of the basic unit of
angular momentum, ℏ. The quantum nature of OAM has
clearly been observed in quantum entanglement experi-
ments.7−9

The donut-shaped intensity profile of OAM light is a result
of the phase discontinuity, or vortex, at the center of the beam
which causes the field-intensity to necessarily be zero there.
OAM light can be described using Laguerre−Gaussian beams
LGpl(r,φ) (see Methods), where l corresponds to the OAM
number and p governs the number of radial maxima. We will be
limiting our treatment to beams with p = 0. When focusing an
OAM beam, its spatial extent is governed by diffraction. Figure
1a and b show the calculated field quadrature and intensity
profiles of a focused beam with l = 1 and l = 2, respectively. An
object of size d≪ λ/2NA, with λ the wavelength (900 nm) and
NA the numerical aperture (here NA = 0.4), will lie completely
in the low-intensity center and therefore interact with OAM
light only very weakly. This effect becomes more pronounced
for larger OAM number l, as the radius of maximum intensity
scales with √l.10

To calculate the transition probability Pi→f for an electronic
system to go from an initial state |Ψi⟩ to a final state |Ψf⟩,
Fermi’s golden rule is applied: Pi→f = |⟨Ψi|HI|Ψf⟩|

2ρf(ω), where
HI is the interaction Hamiltonian and ρf(ω) the density of final
states. In case of optical transitions, HI is given by A(r)·p, with
A(r) the vector potential and p the momentum operator
(−iℏ ∇). Because the extent of the wave function is usually

much smaller than the wavelength one can typically apply the
dipole approximation; i.e., the field can be considered constant
over the integral and higher-order contributions that depend on
the spatial variation of the vector potential can be ignored. In
our case, this approximation does not hold for two reasons.
First of all, in optical quantum dots, the wave function can span
tens of nanometers, several orders of magnitude larger than
typical atomic scales. This can result in measurable effects in for
example the emission lifetime.11 Second, by using a plasmonic
antenna structure, much larger wave vectors can be accessed,
and one is therefore not restricted to free-space propagating
wave vectors which give the diffraction limit of kmax = 2π/λ.
Although the integral for transition probabilities is hard to
evaluate in general, one can predict which transitions will be
allowed based on symmetry arguments.
The vector potential of an OAM beam can be written as

A(r,φ,z) = εLGpl(r,φ)e
i(kz‑ωt) + c.c., with ε the light polarization

and z the direction of propagation. The electron wave functions
in a disk-shaped circularly symmetric quantum dot, where the
z-direction is most strongly confined, are approximately given
by the LG functions in the (r, φ) plane.12,13 The hole wave
functions deviate significantly from this, but still keep their
symmetry properties. Because the optical field and the wave
functions are so similar, the overall symmetry of the transition
probability integral ∫Ψi*(r)A(r)·(−iℏ ∇Ψf(r)) dr can now be
modified by precisely choosing the spatial properties of the
driving field.14 This is in contrast to previous work about the
breakdown of selection rules due to creation of large field-
gradients in plasmonic structures.15,16 The freedom of choosing
the spatial structure of the incoming light beam profile allows,
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for example, to selectively drive cylindrical quadrupole
transitions that are dipole-forbidden by illuminating with
l = 1 light (see Supporting Information for a more detailed
analysis).
The antenna design we propose and study here is presented

in Figure 1c. It consists of 8 circularly arranged strips of gold,
each of them 25 nm wide and 50 nm thick, acting as dipole
antennas.17,18 A resonant antenna can confine a linearly
polarized optical field spatially and enhance its intensity by
several orders of magnitude. It has been shown that a system of
4 coupled antennas can reproduce any polarization state at the
nanoscale.19 Our system of 8 coupled antennas, however, has
richer behavior that becomes clear when illuminating the
structure with OAM light. This geometry is very different from
so-called bull’s eye structures, which have been shown to be
able to transmit OAM light.20

We perform finite difference time domain (FDTD)
simulations using Lumerical FDTD. At a distance of 50 nm
above the antenna we position a circularly polarized source with
l = 0 (a Gaussian beam), l = 1 or l = 2, and we monitor the
resulting optical fields at midheight of the antenna structure.
Since we are interested in enhancement of the absorbed energy
in the central circle, we calculate the integral ∫ |E|2 dA within a
radius of 48 nm and plot the resulting intensity as a function of
wavelength in Figure 2a−c. It is clear that for all instances of
illumination the antenna shows one or more resonances. For
the case of l = 1 illumination of an antenna with arm length of
350 nm we plot the two resonant modes in Figure 2, parts d
and e. These correspond to the case where each antenna arm is
half a wavelength long (Figure 2e, λ = 1481 nm) and one
wavelength long (Figure 2d, λ = 784 nm) (the effective
wavelength relevant for antennas is known to be shorter than
the free-space wavelength21). It is interesting to note that the

Figure 1. l = 1 and l = 2 Laguerre−Gaussian modes and antenna structure. (a) Field quadratures (indicated as real and imaginary part) and intensity
of a Laguerre−Gaussian mode with l = 1, corresponding to a diffraction limited spot at 900 nm with a NA of 0.4. The donut intensity profile with
vanishing intensity in the center is the biggest problem for coupling OAM light to microscopic structures. (b) same plots as in part a, but for an l = 2
mode. The center region of low intensity is larger than for an l = 1 mode. (c) the antenna geometry studied here: 8 gold rods, 25 nm wide, and 50
nm thick in a circular geometry. The aim is to focus OAM light in the central 100 nm wide region.

Figure 2. Wavelength-dependent antenna enhancement and resonant modes. (a) Integrated |E|2 intensity within a circle of 48 nm radius around the
center when illuminating several differently sized antennas of Figure 1c with a beam having l = 0, i.e., a normal Gaussian beam. Resonances are
visible, but they have a very limited Q-factor of ∼3. Each curve is the result of 5 simulations with center wavelengths of 690, 860, 1070, 1320, and
1610 nm. The input beam is a diffraction limited spot with NA 0.6 at 1320 nm. (b) As in part a, but when illuminating the antennas with an l = 1
beam. The resonances are more pronounced and have a higher Q-factor of ∼10. (c) again as in part a but for an l = 2 beam. Resonances show an
even higher Q-factor of ∼17. (d) Second order l = 1 mode for an antenna with L = 350 nm. This corresponds to each antenna arm being 1λ long.
Three intensity maxima are visible, two at the ends of each rod and one in the center. (e) First order l = 1 mode for the same antenna; each arm is
(1/2)λ long. Only two intensity maxima are present at the rod ends.
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interaction between the antenna arms results in much larger Q-
factors when driven with a larger OAM number; this is usually
related to a larger fraction of the resonant fields being present
in the dielectrics and a smaller fraction in the lossy metals.
Because of the lower optical losses in gold at longer
wavelengths, the enhanced response becomes more pro-
nounced at these longer wavelengths. We also observe a
small red shift of the resonance with increasing OAM number.
In Figure 3a−c, we show a zoom-in of the antenna center

(arm length L = 150 nm, (1/2)λ resonance) and see that the
field intensity is drastically enhanced there by at least 2 orders
of magnitude. For l = 1 and l = 2 illumination there is a still a
low intensity in the center; a requirement due to the phase-
vortex. The crucial question now is whether the OAM spatial
field profile is maintained at the nanoscale. Therefore, we plot
one quadrature of the electric field in Figure 3d−f. As expected,

for a normal Gaussian beam (Figure 3d) the phase is constant
within the antenna center. However, for l = 1 and l = 2
illumination the 2- and 4-lobed pattern associated with OAM
light is still present with a high intensity (for all field
components see Supporting Information, Figure S2 and S3).
A quantum dot located in the center would therefore still be
influenced by the spatially varying optical field. An antenna
consisting of a larger number of arms, i.e. having higher
symmetry, would be able to reproduce the field profile more
faithfully. However, this would become impractical in terms of
fabrication, so we have limited our treatment to 8 arms.
Finally, to better quantify the obtained intensity enhance-

ment we plot line-cuts from Figure 3a−c on a logarithmic scale
in Figure 4. From the zoomed-out images we see that the
intensity profile is especially strongly modified for beams
carrying OAM, with much higher intensities around the phase-

Figure 3. Confined OAM field profiles. (a−c) |E|2 intensity profiles on resonance for an antenna with L = 150 nm for l = 0 (a), l = 1 (b), and l = 2
(c). Without OAM the intensity in the center is large whereas excitation with OAM light results in a vanishing intensity in the center. (d−f)
Imaginary part of the Ex-component of the electromagnetic field for l = 0 (d), l = 1 (e), and l = 2 (f). The vanishing |E|2 intensity in the center results
from the phase relation corresponding to OAM light. A microscopic object in the center could therefore still be affected by the phase-vortex.

Figure 4. Confined OAM field intensity enhancement. (a−c) Line-cuts of the |E|2 intensity profiles of the fields on resonance for an antenna with
L = 150 nm in Figure 3a−c (solid green) for l = 0 (a), l = 1 (b) and l = 2 (c). A reference curve (dashed blue) indicates the field intensity without
antenna structure and gives a good indication of the enhancement factor. (d−f) Zoom-ins of parts a−c.
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vortex at the origin (r = 0). From the zoomed-in images we
learn that the OAM light intensity is even significant at the
nanoscale: for l = 1, the intensity reaches that of a normal
Gaussian beam at r ∼ 10 nm; for l = 2, this occurs at r ∼ 20 nm.
These length-scales are close to the typical size of quantum
dots.
The antenna structures we propose here would be very

suitable for optical trapping22 as well. In the l = 0, case they
would deliver a high intensity localized trap that is cylindrically
symmetric and can be used to trap dielectric particles with an
index higher than their environment. Lossy and reflective
particles, however, require an intensity minimum to be
trapped.23,24 Our antennas, in combination with l = 1 or
l = 2 illumination, would be able to provide such a cylindrically
symmetric trap on a much smaller length scale than available
with free-space optics. The strongly enhanced confinement also
results in a much stiffer trap, because the stiffness of a trap is
proportional to the magnitude of the gradient. Because of both
the increased intensity and the decreased spatial extent we find
an enhancement of the field gradient magnitude of approx-
imately 3.2 × 103 and 4.6 × 104 at r = 10 nm using l = 1 and
l = 2 illumination respectively (see Supporting Information,
Figure S4).
Our antenna structures provide a crucial enhancement of

OAM light-field intensities at the nanoscale, and therefore open
the way to explore interactions between OAM light and
microscopic quantum systems. This could for example lead to
efficient measurement of OAM number of a light beam and
quantum information processing applications using optical
quantum dots or Bose−Einstein condensates.24

Methods. Laguerre−Gaussian Beams. In the paraxial
approximation the waist of a Laguerre−Gaussian beam is
described by the field: LGpl(r,φ) = C(r√2/r0)

|l|Lp
|l|((2r2/r0)

exp(−r2/r02)) exp(ilφ)where C is a normalization constant, r0 is
the beam waist radius, r and φ the cylindrical coordinates and
Lp

|l| the generalized Laguerre polynomial of degree p and order
|l|. The parameters p and l govern the number of radial maxima
and azimuthal zero crossings respectively; we refer to l as the
OAM number and only consider the case p = 0, i.e., only one
radial maximum.
Simulation Details. Simulations are performed with

Lumerical FDTD. The source field profile is a circularly
polarized OAM beam corresponding to a diffraction limited
spot at a wavelength of 1320 nm with an NA of 0.6. The
meshing accuracy is set to 6 and in the central region of 150 ×
150 × 60 nm it has a 2 × 2 × 2 nm resolution. The simulation
is run with a dt stability factor of 0.9. Broadband results are
obtained by performing several different simulations with
center wavelengths of 690, 860, 1070, 1320, and 1610 nm.
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