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Measurement of the g-factor tensor in a quantum dot and disentanglement of exciton spins
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We perform polarization-resolved magneto-optical measurements on single InAsP quantum dots embedded
in an InP nanowire. In order to determine all elements of the electron and hole g-factor tensors, we measure
in magnetic fields with different orientations. The results of these measurements are in good agreement with
a model based on exchange terms and Zeeman interaction. In our experiment, polarization analysis delivers a
powerful tool that not only significantly increases the precision of the measurements, but also enables us to probe
the exciton spin-state evolution in magnetic fields. We propose a disentangling scheme of heavy-hole exciton
spins enabling a measurement of the electron spin T2-time.
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I. INTRODUCTION

Carrier spins in semiconductor quantum dots (QDs)
have attracted considerable interest due to their potential in
quantum information processing based on optical, ultrafast
spin manipulation. In recent years, impressive steps toward this
goal have been demonstrated: high-fidelity spin initialization
by optical pumping,1 coherent population trapping,2,3 and
coherent spin rotation with picosecond optical pulses.4 In
all of these cases, electron and hole g-factors play a crucial
role in defining the qubit energy levels. In order to optically
address only a single spin state and reduce off-resonant
coupling to other states, large g-factors are desired. On the
other hand, an electron g-factor of zero is preferable for
coherent photon-to-spin conversion.5–7

In bulk semiconductors, strong spin-orbit interaction is
responsible for relatively large negative electron g-factors8

(e.g., in InAs ge = −14.7 versus free electron ge ≈ 2). Three-
dimensional (3D) confinement in a quantum dot can result in
quenching of the orbital angular momentum and hence lead to
the modification of g-factors.9,10 The influence of confinement
on g-factors has been studied in various experiments.10–15

However, only some of the electron and hole g-tensor compo-
nents were probed [e.g., exciton g-factor gX = (ge,z + gh,z)],
providing an incomplete tensor measurement.

Here, we report the results of photoluminescence (PL) mea-
surements in magnetic fields in three different orientations on
two differently charged QDs that reveal all of the components
of the electron and hole g-factor tensors. Our measurements
are polarization resolved and therefore provide information
about magnetic field induced mixing of quantum states, which
was not accessible in previous experiments.16 The nanowire
QDs we use are a promising system for g-factor engineering
because of the possibility to controllably grow QDs of different
sizes and aspect ratios.

II. MODEL

In order to describe neutral and charged excitons in a
magnetic field, we will utilize the Hamiltonians discussed in
detail in Bayer et al.17 and van Kesteren et al.18 For simplicity,
only holes that form the top of the valance band, i.e., heavy
holes (Jh,z = ±3/2), are considered here. The electron with a
spin Se,z = ±1/2 (↑ or ↓) and heavy hole with Jh,z = ±3/2

(⇑ or ⇓) can form four exciton states of different total
exciton-spin projections Jz:

|+1〉 = |↓⇑〉, |−1〉 = |↑⇓〉,
(1)

|+2〉 = |↑⇑〉, |−2〉 = |↓⇓〉.
The electron and hole spin couple to the external magnetic
field via the Zeeman Hamiltonian. By using these four exciton
states as the basis, the Zeeman Hamiltonian for a magnetic
field Bz oriented along the QD quantization axes (the Faraday
configuration) can be represented by the matrix17

Hz
B = μBBz

2

⎛
⎜⎜⎜⎝

gX,+1 0 0 0

0 gX,−1 0 0

0 0 gX,+2 0

0 0 0 gX,−2

⎞
⎟⎟⎟⎠ , (2)

where gX,±1 = ±(ge,z + gh,z) and gX,±2 = ±(ge,z − gh,z) are
the expressions for bright (| ± 1〉) and dark (| ± 2〉) exciton
g-factors in the z direction.

The orientation of the magnetic field in the Faraday
configuration matches the QD quantization axis (z, growth
direction). Therefore, the eigenstates of the Hz

B Hamiltonian
coincide with the chosen basis (1).

In the Voigt configuration, the magnetic field is applied in
the plane of the QD (for simplicity, we consider only the x

direction), resulting in breaking of the rotational symmetry
about the z axis. This leads to the Hx

B Hamiltonian17

Hx
B = μBBx

2

⎛
⎜⎜⎜⎝

0 0 ge,x gh,x

0 0 gh,x ge,x

ge,x gh,x 0 0

gh,x ge,x 0 0

⎞
⎟⎟⎟⎠ . (3)

The off-diagonal terms account for mixing between bright
and dark states. In the Voigt configuration (Bx), the resulting
eigenvectors are linear superpositions of basis vectors,

|X∗
90◦ (I )〉 = 1

2 (| + 1〉 + | − 1〉 + | + 2〉 + | − 2〉),
|X∗

90◦ (II )〉 = 1
2 (| + 1〉 − | − 1〉 + | + 2〉 − | − 2〉),

(4)
|X∗

90◦ (III )〉 = 1
2 (| + 1〉 − | − 1〉 − | + 2〉 + | − 2〉),

|X∗
90◦ (IV )〉 = 1

2 (| + 1〉 + | − 1〉 − | + 2〉 − | − 2〉).
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The labels I to IV indicate the eigenstates ordered by increasing
energy.

Electron and hole spins do not only interact with an external
magnetic field, but also with each other. Exchange interaction
couples electron and hole spins in QDs and splits the energy
of electron-hole pairs with different spin configurations. The
Hamiltonian for the exchange interaction can be written as17,18

Hexchange = 1

2

⎛
⎜⎜⎜⎝

+δ0 +δ1 0 0

+δ1 +δ0 0 0

0 0 −δ0 +δ2

0 0 +δ2 −δ0

⎞
⎟⎟⎟⎠ , (5)

where δ0 is the splitting between bright and dark states, δ1

is often referred to as the fine structure splitting (FSS) of a
bright exciton, and δ2 is the equivalent splitting for a dark
exciton. Note that the exchange interaction is present for a
single electron and hole pair (neutral exciton), and vanishes for
more complex exciton molecules that consist of two electrons
(total Se,z = 0) and/or two holes (total Jh,z = 0). This is the
case for a biexciton and singly charged excitons.

III. EXPERIMENT

We studied single InAs0.25P0.75 wurtzite quantum dots
(QDs) embedded in InP wurtzite nanowires grown in the
[111] direction. We performed PL measurements with a
continuous-wave 532-nm excitation laser. The polarization
of the QD emission was fully characterized by tomography
measurements using two liquid-crystal variable retarders. Our
cryostat (T ≈ 10 K) with a vector magnet allowed us to vary
the direction of the magnetic field in the x-z plane, with z

being both the optical axis and the nanowire growth direction.
Three magnetic field configurations, i.e., Faraday, Voigt, and
60◦, that are of a particular interest in our experiment are
given in Fig. 1(a), together with a schematic of a nanowire.
A typical QD, with a diameter of 30 nm and height of 10
nm, is surrounded by a thin shell of InP. Emission linewidths
as narrow as 33 μeV [Fig. 1(b)] are clear signatures of the
excellent quality of our QDs, which have also demonstrated
spin memory in previous studies.19 Power-dependent PL
spectra presented here [Fig. 1(c)] belong to a singly charged dot
for which the g-factors will be determined in Sec. IV. The PL
intensities of the two observed transitions show a linear and a
quadratic dependence on excitation power [Fig. 1(d)], which is
consistent with an exciton and biexciton type of recombination.

IV. CHARGED EXCITON

We start our discussion with a charged exciton X∗ in a
magnetic field, since its description is simpler than the neutral
exciton X0 case. As mentioned earlier, there is no exchange
interaction for X∗ and therefore the Zeeman Hamiltonian alone
will provide a sufficient model. Although in our experiment
we have no means of distinguishing between the positively and
negatively charged exciton, the description for both cases is
the same. Figure 2 presents the X∗ behavior in three different
magnetic field configurations (Faraday, Voigt, and 60◦).
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FIG. 1. (Color online) Structural and optical properties of
nanowire quantum dots. (a) Schematic nanowire and magnetic field
orientations. (b) PL spectrum of a single exciton recombination. (c)
Power-dependent spectra taken at 10 K under nonresonant (532 nm)
excitation at B = 0. The two emission peaks are identified as a
charged exciton (X∗) and charged biexciton (XX∗). (d) Integrated
intensity of X∗ and XX∗ transitions vs excitation power. The solid
(dashed) line is a guide to the eye for linear (quadratic) power
dependence.

The charged exciton PL spectra in the Faraday configu-
ration are given in Fig. 2(a). Two exciton states of circular
polarization σ+ and σ− corresponding to the | + 1〉 and
| − 1〉 bright states are observed. The peak positions shift
with magnetic field due to both Zeeman and diamagnetic
effects. After subtracting the quadratic contribution from the
diamagnetic shift, the exciton-state energy versus magnetic
field is plotted in Fig. 2(b). The experimental data is fitted
with the eigenvalues of the relevant Hamiltonian, in this
case Hz

B (2), using gX,+1 = ge,z + gh,z as the free fitting
parameter. Since the two remaining exciton states—dark
excitons X∗

0◦ (II ) and X∗
0◦ (III )—are not visible in the Faraday

configuration, gX,+2 = ge,z − gh,z cannot be extracted from
this measurement.

The situation changes in the Voigt configuration due to
mixing between states. All four exciton states are present
in the PL spectra, as evident in Fig. 2(c). The transitions
are linearly polarized: horizontally |H 〉 = 1/

√
2(| − 1〉 + | +

1〉) and vertically |V 〉 = i/
√

2(| − 1〉 − | + 1〉). Interestingly,
all four exciton states [X∗

90◦ (I ), X∗
90◦ (II ), X∗

90◦ (III ), and
X∗

90◦ (IV )] have equal measured intensities, implying that they
must all be equally composed of bright and dark components.
These empirical observations are indeed confirmed by analysis
of the Hx

B eigenvectors from (4). We find an agreement not only
with the fitted energies [Fig. 2(d)], but also between observed
and predicted brightness and polarization.

From the Faraday and Voigt configurations, only in-plane
electron ge,x and hole gh,x g-factors can be extracted, but the
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FIG. 2. (Color online) Photoluminescence of a charged exciton (X∗) in a magnetic field in three different configurations (Faraday, Voigt,
60◦). (a), (c), (e) Polarization-resolved spectra. (b), (d), (f) Energies of the exciton transitions after diamagnetic shift subtraction (data points)
fitted with the Zeeman Hamiltonian (lines) for the corresponding magnetic field configuration. The X∗ recombination energy at zero magnetic
field (1.2703 eV) is subtracted. The energy error-bar value is 7.4 μeV.

separate values of ge,z and gh,z remain unknown. This missing
information is provided by measurements at an intermediate
angle (60◦), where some of the features from the Faraday
configuration and from the Voigt configuration are combined.
Similarly to the Voigt configuration, all four exciton states are
observed in the PL spectra, as shown in Fig. 2(e). Nevertheless,
the PL intensity of exciton states X∗

60◦ (II ) and X∗
60◦ (III )

is on average three times weaker than the PL intensity of
states X∗

60◦ (I ) and X∗
60◦ (IV ). The transitions are circularly

polarized, just like in the case of the Faraday configuration.
The fit from Fig. 2(f) completes the set of g-factors that
is summarized in Table I. Moreover, from the same fit, we
obtain the expected degree of mixing between dark and
bright states. States X∗

60◦ (II ) and X∗
60◦ (III ), which were

completely dark in the Faraday configuration, now consist of
26% bright components (| − 1〉 and | + 1〉, respectively). This
gain in brightness comes at the expense of states X∗

60◦ (I ) and
X∗

60◦ (IV ), whose brightness drops to 74% (compared to 100%
in the Faraday configuration). These predictions match very
well with our experimental observations.

V. NEUTRAL EXCITON

In the analysis of the neutral exciton X0 in a magnetic field,
one has to take into account not only the Zeeman Hamiltonian
[(2) and (3)], but also the exchange interaction Hamiltonian
(5). Although the exchange energies are much smaller than 1
meV and might seem to give only a small correction, the actual
effect on the polarization of the eigenstates will prove to be
tremendous.

Figure 3(a) presents the schematic of the neutral exciton
and biexciton levels in a magnetic field at an intermediate
angle (both x and z field components). The biexciton, with a
total spin Se,z = 0 and Jh,z = 0, experiences no Zeeman effect

and no exchange interaction and therefore its recombination
energies perfectly mirror those of the exciton transitions.
Thus, one can identify the same splittings, for instance δE1

and δE2 in Fig. 3(a), in both the biexciton and the exciton
emission. We will take advantage of this simple fact and
use the biexciton emission to increase the precision of our
measurement [especially in Fig. 4(e)]. Figure 3(b) presents the
spectrum of a neutral dot in a magnetic field at 60◦, where,
indeed, δE1 and δE2 have the same magnitude for the exciton
and the biexciton.
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FIG. 3. (Color online) (a) Schematic of the neutral exciton
and biexciton energy levels in a magnetic field at 60◦ and (b)
corresponding spectrum for B60 = 3.2 T (B = [2.8 T, 0, 1.6 T]).

195305-3



B. J. WITEK et al. PHYSICAL REVIEW B 84, 195305 (2011)

0 1 2 3 4

−0.1

0

0.1

0.2

0.3

X0
0°

(I)

X0
0°

(II)

X0
0°

(III)

X0
0°

(IV)

(a)

Magnetic Field B (T)

0° (Faraday)

0
 

0.5
 
1

X0
0°

(I)

(b)

X0
0°

(II)

0 1 2 3 4
0
 

0.5
 
1

X0
0°

(III)

0 1 2 3 4

X0
0°

(IV)

0 1 2 3 4

−0.1

0

0.1

X0
90°

(I)

X0
90°

(II)

X0
90°

(III)

X0
90°

(IV)

(c)

Magnetic Field B (T)

90° (Voigt)

0
 

0.5
 
1

X0
90°

(I)

(d)
X0

90°
(II)

0 1 2 3 4
0
 

0.5
 
1

X0
90°

(III)

0 1 2 3 4

X0
90°

(IV)

0 1 2 3 4

−0.1

0

0.1

0.2

X0
60°

(I)

X0
60°

(II)
X0

60°
(III)

X0
60°

(IV)

(e)

Magnetic Field B (T)

60°

0
 

0.5
 
1

X0
60°

(I)

(f)

X0
60°

(II)

0 1 2 3 4
0
 

0.5
 
1

X0
60°

(III)

0 1 2 3 4

X0
60°

(IV)

Magnetic Field B (T) Magnetic Field B (T) Magnetic Field B (T)

T
ot

al
 S

pi
n 

J z C
om

po
ne

nt
E

ne
rg

y 
(m

eV
)

 +1  −1  V  H  +2  −2

FIG. 4. (Color online) Photoluminescence of a neutral exciton (X0) in a magnetic field in three different configurations (Faraday, Voigt,
60◦). (a), (c), (e) Energies of the exciton transitions after diamagnetic shift subtraction (data points) fitted with the Zeeman Hamiltonian (lines)
for the corresponding magnetic field configuration. The average of the bright- and dark-exciton recombination energy at zero magnetic field,
1.2775 eV, is subtracted. The energy error-bar value is 7.4 μeV. (b), (d), (f) Projection of the four exciton states’ eigenvectors onto the | + 1〉,
| − 1〉, | + 2〉, and | − 2〉 basis, as well as their linear combination |H 〉 and |V 〉.

Figure 4 shows the results of measurements on a neutral
QD in the same magnetic field configurations as previously
discussed for the charged QD. We begin with the Faraday
configuration. Two states, X0

0◦ (III ) and X0
0◦ (IV ), are visible

and their energies (data points) are given in Fig. 4(a). The sum
of the exchange and Zeeman Hamiltonians Hexchange + Hz

B is
diagonalized in order to extract the four energy eigenvalues
that fit our data (lines). Simultaneously, we also obtain the
eigenvectors corresponding to the four exciton states. Each
eigenvector, representing one state, can be projected onto the
total exciton-spin Jz basis from (1). All the considered Jz

components are listed in the legend. Figure 4(b) consists of
four plots, each describing the Jz components of a given
exciton state. Only states X0

0◦ (III ) and X0
0◦ (IV ) are bright and,

hence, measurable. At zero magnetic field, they both consist
equally of | + 1〉 and | − 1〉, resulting in linearly polarized,
neutral exciton transitions. With increasing magnetic field, the
transitions evolve toward pure σ+ (Jz = | + 1〉) and pure σ−

(Jz = | − 1〉) polarization. The degree of circular polarization
was measured for exciton states X0

0◦ (III ) and X0
0◦ (IV ) and

plotted as gray diamonds. The agreement with the predicted
curve is very good.

In the Voigt configuration, mixing between dark and bright
states becomes sufficiently strong around Bx = 2 T to reveal all
four exciton states, whose energies are plotted in Fig. 4(c). In
contrast to the charged exciton case [Fig. 2(d)], all the exciton
states are already split at B = 0 by the exchange energies
(δ0, δ1, and δ2). The solid lines give the fitted eigenvalues
of the Hexchange + Hx

B Hamiltonian. As apparent in Fig. 4(d),

states X0
90◦ (I ) and X0

90◦ (II ) start as completely dark at zero
magnetic field. With increasing magnetic field, they acquire
bright components, i.e., |H 〉 and |V 〉, respectively, and hence
become detectable in PL. This gain in brightness (up to
20% at Bx = 4 T) comes at the expense of X0

90◦ (III ) and
X0

90◦ (IV ) states. These initially purely bright states mix with
dark components | + 2〉 and | − 2〉, decreasing the contribution
of |H 〉 and |V 〉 to only 80% at Bx = 4 T. Based on the
results given by our model, we draw the conclusion that state
X0

90◦ (I ) couples to X0
90◦ (III ), and state X0

90◦ (II ) couples to
X0

90◦ (IV ). The coupled states share the same symmetry: the
first pair form an antisymmetric superposition of spins [at
B = 0; |X0

90◦ (I )〉 = 1/
√

2(|↑⇑〉 − |↓⇓〉) and |X0
90◦ (III )〉 =

1/
√

2(|↓ ⇑〉 − |↑ ⇓〉)], whereas the second pair of coupled
states is a symmetric superposition of spins. The magnetic
field Bx is responsible for the precession of the carrier spins
around the x axis and therefore couples the states of the same
symmetry.

The total brightness of a pair of coupled
states can be defined as the sum of their bright
components. This brightness per pair is conserved, for
instance: |〈V |X0

90◦ (I )〉|2 + |〈V |X0
90◦ (III )〉|2 = 1 and

|〈H |X0
90◦ (II )〉|2 + |〈H |X0

90◦ (IV )〉|2 = 1. Using the above
expressions as normalization factors, the contribution of the
|V 〉 component to the states X0

90◦ (I ) and X0
90◦ (III ) [and the

|H 〉 component to the states X0
90◦ (II ) and X0

90◦ (IV )] can
be determined from the experiment. The data points (gray
diamonds) obtained in this way again follow our predictions
with good accuracy.
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In the case of the intermediate angle (60◦) in Fig. 4(e),
the biexciton recombination energies (mirrored about 0) are
represented by triangles, whereas the exciton data are shown by
circles. The evolution of the initially bright states, X0

60◦ (III )
and X0

60◦ (IV ), is equally well reflected by both sets of data
points, which confirms the equivalence of X0 and XX0 in our
experiment.

We focus now on the analysis of Jz components of the
exciton states measured in the 60◦ configuration. First of
all, a striking asymmetry in the exciton states’ total spin Jz

composition is immediately recognized in Fig. 4(f). Unlike in
the Voigt configuration [Fig. 4(d)], states X0

60◦ (I ) and X0
60◦ (II )

reach a very different contribution of bright components. At
B60◦ = 4 T, it is 34% of | + 1〉 for state X0

60◦ (I ) and only 10%
of | − 1〉 for state X0

60◦ (II ). Consequently, bright components
of states X0

60◦ (III ) and X0
60◦ (IV ) evolve unevenly; they drop

from 100% at B60◦ = 0 to 66% and 90%, respectively, at
B60◦ = 4 T. Following the same procedure as described for
the Voigt configuration, we add experimental data points
(gray diamonds). There is a good correspondence between
the predicted asymmetry and our measurement.

There is a simple explanation for this phenomenon. The
energy separation between the exciton states sets the strength
of the coupling. The gap between states X0

60◦ (II ) and X0
60◦ (IV )

[Fig. 4(e)] is significantly bigger than for the other pair of
states [X0

60◦ (I ) and X0
60◦ (III )]. This results in a much weaker

coupling, which is the main reason for the practical difficulties
in detecting the extremely weak PL emission from the X0

60◦ (II )
state. The same arguments should also be applied to the
Voigt configuration [Fig. 4(c)]. In this case, however, the
splittings between the coupled pairs of states are similar and
the asymmetry becomes a negligible effect.

VI. DISCUSSION

The complete set of g-factors, exchange energies, and
diamagnetic coefficients obtained from the fits for charged
and neutral excitons is summarized in Table I. The g-factor
components and exchange terms δ0, δ1 are determined with

TABLE I. Values of g-factors and exchange energies for both
neutral and charged excitons.

g-factor Neutral exciton X0 Charged exciton X∗

ge,z −0.84 ± 0.02 −0.70 ± 0.02
gh,z −0.92 ± 0.03 −1.33 ± 0.04
|ge,x | 0.96 ± 0.02 1.00 ± 0.02
|gh,x | 0.04 ± 0.02 0.12 ± 0.01

Exchange

δ0 163.7 ± 2.2 μeV
δ1 17.7 ± 2.0 μeV
δ2 3.5 ± 2.9 μeV

Diamagnetic coefficient

γ0◦ 11.4 ± 1.9 μeV/T 2 9.7 ± 0.7 μeV/T 2

γ60◦ 9.5 ± 1.7 μeV/T 2 8.2 ± 1.0 μeV/T 2

γ90◦ 7.3 ± 1.9 μeV/T 2 7.4 ± 1.0 μeV/T 2

high precision. The magnitude of the FSS (δ1) is confirmed by
an additional measurement performed at zero magnetic field as
a function of the PL polarization angle (δ1 = 16.1 ± 2.6 μeV).
The diamagnetic coefficients γ0◦ and γ90◦ confirm a stronger
confinement along the z direction.

In principle, our nanowire QD should exhibit C3v

symmetry.20 However, several factors might lower this. First
of all, the bottom interface of the QD is sharper than the top
one. Second, the randomness of alloying could further reduce
the symmetry. In our case, the Hamiltonians [Eqs. (2), (3),
(5)] that are attributed to a symmetry lower than D2d , or even
no symmetry at all,17 reproduce the experimental results very
well.

Performing this type of g-factor mapping experiment,16 we
obtain the polarization resolved spectra and therefore access
to the sign of electron and hole g-factors along the z direction.
Strong confinement responsible for orbital angular momentum
quenching10 pushes the exciton g-factor to positive values, as
reported for a similar InAs/InP self-assembled QDs system13,14

(gX as high as 1.25). In our case, however, the exciton g-factor
is found to be negative (gX = ge,z + gh,z is −1.76 and −2.03),
implying a weaker confinement. Indeed, the average height of
the nanowire QD is larger than for self-assembled QDs. In the
case of the in-plane g-factors, it is not possible to tell if they
are positive or negative, since the polarization of exciton states
in the Voigt configuration is insensitive to their sign.

The in-plane hole g-factor gh,x is almost zero, which
resembles the situation in quantum wells.21,22 In theory, the
heavy-hole (hh) in-plane g-factor is almost negligible and
mostly determined by a Luttinger q parameter,21 ghh,x ≈ 3q,
whereas the light-hole g-factor takes larger nonzero values.23

For bulk InAs and InP, Luttinger parameters are 0.04 and
0.02, respectively,24 leading to an estimated ghh,x ≈ 0.09.
The experimental result for nanowire QDs deviates slightly
from this approximation, which is not surprising taking into
account the 3D confinement. The charged exciton in-plane
hole g-factor (gh,x = 0.12 ± 0.01) is larger than the neutral
one (gh,x = 0.04 ± 0.02), and the same trend was reported
for interfacial QDs in GaAs quantum wells.16 Still this value
is not large enough to imply heavy-hole–light-hole coupling.
Although in our analysis we completely neglect light holes,
we still obtain a very precise description of the experiment,
which confirms the validity of our assumption.

The exciton-spin behavior is substantially different for
the charged and neutral exciton. As apparent from the
charged exciton spectra in Fig. 2, the polarization and relative
intensity of the transitions is independent of the magnetic field
magnitude, implying that the mixing between bright and dark
states is constant. Dark states become visible immediately
in the nonzero transverse magnetic field, which is crucial
in experiments involving a three-level � system formed by
charged exciton states in the Voigt configuration.2,3 On the
other hand, for the neutral exciton, the strength of bright-dark
state mixing increases with magnetic field (Fig. 4). The
separation δ0 between the bright and dark states prevents the
immediate coupling.

Our studies have demonstrated that the coupling strength
between exciton states can be tuned by a careful choice of the
magnetic field angle and magnitude. This opens the possibility
of engineering any superposition of exciton-spin states at
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FIG. 5. (Color online) Simulation of neutral exciton states in a
magnetic field at 20◦. The exchange energies and g-factors are the
experimental values. (a) Energy shift due to the Zeeman effect and
(b) the projection of the four exciton states’ eigenvectors onto the
| + 1〉, | − 1〉, | + 2〉, and | − 2〉 basis.

will. One particular example is illustrated in Fig. 5, where
the behavior of a neutral exciton in a magnetic field at 20◦
is simulated. We took the experimental values of exchange
energies and g-factors listed in Table I. Figure 5(a) plots the
energies of exciton states in a magnetic field up to 6 T. We
observe the anticrossing of states X0

20◦ (I ) and X0
20◦ (III ). At the

anticrossing, at approximately B20◦ = 3.6 T, the exciton-spin
states take a special form. As evident from Fig. 5(b), states
X0

20◦ (I ) and X0
20◦ (III ) are equally composed of dark | − 2〉

and bright | − 1〉 components. At the same time states X0(II )
and X0(IV ) do not mix and stay completely dark (| + 2〉) or
completely bright (| + 1〉). We can write the corresponding
spin states at B20◦ = 3.6 T as follows:

|X0
20◦ (I )〉3.6T = 1√

2
(|↓ ⇓〉 − |↑ ⇓〉)= 1√

2
(|↓〉 − |↑〉) ⊗| ⇓〉,

|X0
20◦ (II )〉3.6T = |↑ ⇑〉,

|X0
20◦ (III )

〉
3.6T = 1√

2
(|↓ ⇓〉 + |↑ ⇓〉)= 1√

2
(|↓〉 + |↑〉) ⊗|⇓〉,

|X0
20◦ (IV )〉3.6T = |↓ ⇑〉. (6)

The hole spin |⇓〉 can be factored out from states X0
20◦ (I )

and X0
20◦ (III ), leaving the superposition of electron-spin

states. Note that this is possible only because of a very small
in-plane hole g-factor, which ensures that the hole spin stays
insensitive to x components of the magnetic field. Based on
these properties, we propose a scheme that enables measuring
the electron coherence time T2 in a similar fashion to the
experiment by Kroutvar et al.25 on electron-spin relaxation
time T1. A left-handed, circularly polarized pump pulse (σ−)
can create a superposition, |↑⇓〉 = 1/

√
2[|X0

20◦ (I )〉3.6T −
|X0

20◦ (III )〉3.6T], that precesses in time at a frequency given by

FIG. 6. (Color online) Coherent time evolution of the electron
spin disentangled from the heavy-hole spin.

the difference between the eigenenergies, �E. This situation
is illustrated in Fig. 6, where the photocreated state precesses
in the equator plane of the Bloch sphere. The most crucial
feature in this experiment is that we can factor out and
therefore disentangle the hole state and only consider the
electron superposition 1/

√
2(|↑〉 − ei�Et/h̄|↓〉) ⊗ |⇓〉. Under

the application of external electric field, one can remove
the disentangled hole from the QD without any harm to the
coherence of the electron-spin superposition. After a certain
delay time, a hole can be brought back to the QD. This
will result in a photon emission, whose polarization should
exhibit quantum beats. The envelope of the beats is set by
the electron T2. This suggested method will enable the T2

measurement in time-resolved PL. Other techniques of probing
T ∗

2 , such as time-resolved Faraday26 and Kerr27–29 rotation,
are based on transmission and reflection measurements,
respectively.

VII. CONCLUSION

In conclusion, we have presented a set of magneto-optical
measurements that leads to the precise determination of
g-factor tensor components for the electron and hole. In
addition, the possibility of polarization analysis has given
us a tool to probe the exciton-spin response to the external
magnetic field in any configuration. Our model has proven to
provide a complete and self-consistent description of all the
observed experimental effects in magnetic fields, from the
evolution of the energy of exciton states to the prediction
of their spin eigenstates. We have proposed a scheme of
disentangling heavy-hole exciton spins that opens a way of
measuring electron-spin coherence T2 decoupled from a hole.
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B 65, 195315 (2002).

18H. W. van Kesteren, E. C. Cosman, W. A. J. A. van der Poel, and
C. T. Foxon, Phys. Rev. B 41, 5283 (1990).

19M. H. M. van Weert, N. Akopian, U. Perinetti, M. P. van Kouwen,
R. E. Algra, M. A. Verheijen, E. P. A. M. Bakkers, L. P.
Kouwenhoven, and V. Zwiller, Nano Lett. 9, 1989 (2009).

20R. Singh and G. Bester, Phys. Rev. Lett. 103, 063601 (2009).
21X. Marie, T. Amand, P. Le Jeune, M. Paillard, P. Renucci, L. E.

Golub, V. D. Dymnikov, and E. L. Ivchenko, Phys. Rev. B 60, 5811
(1999).

22S. Glasberg, H. Shtrikman, I. Bar-Joseph, and P. C. Klipstein, Phys.
Rev. B 60, R16295 (1999).

23A. A. Kiselev, K. W. Kim, and E. Yablonovitch, Phys. Rev. B 64,
125303 (2001).

24V. Dymnikov and O. Konstantinov, Phys. Solid State 51, 884 (2009).
25M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh,

G. Abstreiter, and J. J. Finley, Nature (London) 432, 81 (2004).
26J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom, Science

292, 2458 (2001).
27M. H. Mikkelsen, J. Berezovsky, N. G. Stoltz, L. A. Coldren, and

D. D. Awschalom, Nature Phys. 3, 770 (2007).
28J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and

D. D. Awschalom, Science 320, 349 (2008).
29H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura,

T. Kutsuwa, K. Arai, and K. Edamatsu, Phys. Rev. Lett. 100, 096602
(2008).

195305-7

http://dx.doi.org/10.1126/science.1126074
http://dx.doi.org/10.1038/nphys1054
http://dx.doi.org/10.1126/science.1173684
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1016/S1386-9477(00)00296-4
http://dx.doi.org/10.1038/nature07729
http://dx.doi.org/10.1063/1.3407513
http://dx.doi.org/10.1063/1.3407513
http://dx.doi.org/10.1103/PhysRevB.15.816
http://dx.doi.org/10.1103/PhysRevB.58.16353
http://dx.doi.org/10.1103/PhysRevB.58.16353
http://dx.doi.org/10.1103/PhysRevLett.96.026804
http://dx.doi.org/10.1103/PhysRevB.51.7361
http://dx.doi.org/10.1103/PhysRevB.51.7361
http://dx.doi.org/10.1103/PhysRevB.72.201307
http://dx.doi.org/10.1103/PhysRevB.79.045310
http://dx.doi.org/10.1103/PhysRevB.79.045310
http://dx.doi.org/10.1103/PhysRevB.79.045311
http://dx.doi.org/10.1063/1.3309684
http://dx.doi.org/10.1063/1.3309684
http://dx.doi.org/10.1103/PhysRevB.76.033301
http://dx.doi.org/10.1103/PhysRevB.65.195315
http://dx.doi.org/10.1103/PhysRevB.65.195315
http://dx.doi.org/10.1103/PhysRevB.41.5283
http://dx.doi.org/10.1021/nl900250g
http://dx.doi.org/10.1103/PhysRevLett.103.063601
http://dx.doi.org/10.1103/PhysRevB.60.5811
http://dx.doi.org/10.1103/PhysRevB.60.5811
http://dx.doi.org/10.1103/PhysRevB.60.R16295
http://dx.doi.org/10.1103/PhysRevB.60.R16295
http://dx.doi.org/10.1103/PhysRevB.64.125303
http://dx.doi.org/10.1103/PhysRevB.64.125303
http://dx.doi.org/10.1134/S1063783409050023
http://dx.doi.org/10.1038/nature03008
http://dx.doi.org/10.1126/science.1061169
http://dx.doi.org/10.1126/science.1061169
http://dx.doi.org/10.1038/nphys736
http://dx.doi.org/10.1126/science.1154798
http://dx.doi.org/10.1103/PhysRevLett.100.096602
http://dx.doi.org/10.1103/PhysRevLett.100.096602

