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Abstract
A new method for efficient, high-quality randomness extraction is presented. The
method relies on quantum processes such as the emission of single photons and
their subsequent detection, where each detection event has an associated detection
time. By establishing a list of time differences between a fixed number of events, a
unique order can be established.
We note that, by utilising the number of ways to order the resulting list of time

differences between the quantum events, the efficiency can be increased many-fold
compared to current methods. The method delivers fundamentally uniform
randomness and therefore, in principle, does not need debiasing.
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1 Introduction
In many technological areas randomness is an important resource such as in scientific
or engineering simulations, in statistical sampling, in probabilistic computation, in quan-
tum and classical cryptography. Optimally, a random sequence should be impossible to
predict, i.e., it should be harvested from a nondeterministic process. But often determin-
istic so called pseudorandom [1, 2] processes are used in combination with some, at least
partly unpredictable processes, such as the thermal noise in electronic devices [3] or the
amplitude in chaotic oscillators [4]. The shorter nondeterministic string is used as input
to produce a longer sequence. The resulting string can, through the application of an iter-
ative one one-way function be engineered to produce a seemingly uniform random distri-
bution. However, pseudorandom processes implemented in computers are fundamentally
deterministic, since every specific input produces a specific outcome, and in this work we
shall focus on quantum processes, since such processes are believed to be fundamentally
random.

A quantum state in the form of an equal superposition of two basis states, e.g., |ψ〉 =
1√
2 (|0〉 + |1〉) will upon a measurement in the basis {|0〉, |1〉} collapse to either of those

two eigenstates, with a probability of 1/2. Such probabilities, the Born probabilities, are
fundamentally nondeterministic to the best of our knowledge. For this reason, some of
the random number generators on the market are based on this principle, in the form of
a which-path binary outcome of a photon as it either passes through or is reflected in a
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balanced beam splitter. The information of which way the photon took decides the random
bit value [5]. This process thus generates one random bit per photon.

However, in such practical setups it was noted that if the beam splitter was even slightly
off from its balanced setting, the random bit values were somewhat biased towards one of
the two outcomes and thus some debiasing had to be performed, i.e., post processing the
random bits to restore the balance. Such debiasing, however, involves discarding part of
the data, see e.g., von Neumann debiasing [6]. Thus a good randomness extractor would
be one that outputs bits that are uniformly distributed, i.e., so called non-biased random
values [7]. Other authors too have noted that it is possible to extract a non-biased random
bit sequence taking advantage of a particular probability density function stemming from
photon emission, which can be modeled as a Poissonian process [8]. Here, the recorded
detection times can be transformed into a uniform, or non-biased, distribution. Another
interesting feature of the protocol [8, 9] is that for each photon event, considerably more
than one random bit can be harvested in this way. Since each equiprobable event corre-
sponds to a particular time bin (while all other bins are empty), the scheme resembles
pulse position modulation [10], which also can be used to transmit more than one bit of
information per photon [11]. In [12] it was pointed out that the timing precision poses a
fundamental limit for how much information per photon can be conveyed, something we
shall also find is true in this work (but for random bits).

We will now present a method that can extract uniform, or non-biased randomness,
from timing information of quantum events, regardless of the distribution of the emission
process. The efficiency (entropy bits per photon) for which this can be done, is significantly
more than one and we only require that the timing of the quantum events can be treated
as independent and identically distributed (i.i.d.) random variables.

2 Method
Consider a random variable X with a probability density function f (x). Now suppose that
n samples are drawn from X, i.e., x1, x2, x3 . . . xn. We start by showing that each of the n!
possible ways to order the samples are equally probable and irrespective of f (x). To see
this, consider first the simplest case of n = 2 and suppose that we have just drawn the first
sample x1. Then the probability of drawing x2 such that x1 < x2 is simply

P(x1 < x2) =
∫ ∞

x1

f (x2)dx2 = [F(x2)]∞x1 = F(∞)︸ ︷︷ ︸
=1

–F(x1). (1)

If we consider the probability for x1 < x2 before drawing x1, we need to multiply each of
the outcomes for x2 with the probability for drawing x1, such that

P(x1 < x2) =
∫ ∞

–∞
f (x1)(1 – F(x1))dx1 =

∫ ∞

–∞
f (x1)

︸ ︷︷ ︸
=1

–
∫ ∞

–∞
f (x1)F(x1)dx1

= 1 –
[

F(x1)2

2

]∞

–∞

= 1 – (
F(∞)2

2︸ ︷︷ ︸
=1/2

–
F(–∞)2

2︸ ︷︷ ︸
=0

) = 1/2.
(2)
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Listing 1 Mathematica implementation of how to convert an ordering into an integer

Note that this result does not depend on f (x).
For n = 3 we can calculate P(x1 < x2 < x3) as

P(x1 < x2 < x3) =
∫ ∞

–∞
f (x1)

∫ ∞

x1

f (x2)
∫ ∞

x2

f (x3)dx3dx2dx1

=
∫ ∞

–∞
f (x1)

(
1
2

– F(x1) +
F(x1)2

2

)
dx1

=
[

F(x1)3

6

]∞

–∞

= 1/6.

(3)

For a general n, P(x1 < x2 < x3 . . . < xn) similarly becomes

P(x1 < x2 < x3 . . . < xn) =
[

F(x1)n

n!

]∞

–∞

=
1
n!

,
(4)

irrespective of f (x). We also note that the last expression is invariant under interchanging
the indices of the samples, meaning all possible orderings of n samples have the same
probability 1/n!. We have thus shown that all n! possible orderings of n samples drawn
from an arbitrary (but identical) distribution are equiprobable. This can be exploited in a
random number generator by repeatedly drawing blocks of n measured time differences
of quantum events and map them to a unique bit-string.

2.1 Mapping orderings to bit strings
We now consider mapping any possible ordering of a sequence s of length n onto a unique
integer between 0 and n! – 1. The first step is to order s in ascending order into a list so.
Then, for element i = 1 in s, find what position pos it has in so and add (pos – 1) ∗ (n – i)! to
the result. Then remove element si from so and continue this procedure with i = 2, 3, . . . n.

The complete implementation is shown in Listing 1 and example input and output are
listed in Table 1.

We note that sometimes it is not possible to find a perfect mapping of all orderings to
all bit sequences of length k, since

n! = 2k (5)
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Table 1 We list all ways to order 3 unique samples and assign an integer to each possibility. In this
implementation we use Mathematica’s Sort function which is based on lexicographic ordering,
however in principle any 1-to-1 mapping of orderings onto unique integers will do

s WhichOrdering[s]

(1, 2, 3) 0
(1, 3, 2) 1
(2, 1, 3) 2
(2, 3, 1) 3
(3, 1, 2) 4
(3, 2, 1) 5

has only one nontrivial solution for n = 2 and k = 1. This combination was exploited in
[7] where the 2 time differences formed between 3 adjacent detector clicks were used as
to generate one random bit. Thus, if no clicks are re-used, the scheme has an efficiency
of 1/3 bits per click and it is the main message of this work to show that we can build a
bias-free random number generator with considerably better efficiency.

For other combinations of n and k, not all integers 0, 1, . . . , n!–1 can be uniquely mapped
to one element in 0, 1, . . . , 2k –1, while at the same time exhausting all of the latter elements.
From the perspective of generating random bits efficiently, it is therefore best to choose
an n and a k such that n! is just slightly larger than 2k , i.e., when log2(n!) has only a small
fractional part, e.g., log2(65!) = 302.018 or log2(959!) = 8122.00016. In the latter example
we can achieve a bias-free randomness extraction efficiency of about 8.46 entropy bits
per sample, i.e., about 25 times more than when just comparing 2 time differences. The
average efficiency expressed as the number of random bits per photon, E , we calculate as

E =
floor

(
log2(n!)

)
2–fractionalpart

(
log2(n!)

)

n + 1
. (6)

In Fig. 1, E is plotted to illustrate the general dependency on n, and that some choices of
n are better for mapping onto a binary number system. Fig. 1, however, does not include
any effect from a finite precision d and collisions that could occur due to this.

Note that the n samples under consideration correspond to the time differences between
n + 1 quantum events, such as the detection of photons (See Fig. 2 for an illustration).
Consequently, since in our scheme we chose not to re-use any detections (clicks), we have
n + 1 in the denominator of (6).

2.2 Fixing collisions
So far we have disregarded of any of the possibilities xi = xj, i, j ∈ 1 . . . n, which will have a
nonzero probability to occur in a realistic setting. The probability for such events depends
on the precision d of the measurement and the distribution f (x), i.e., for two given samples
x1 and x2 we have

P(x1 – d/2 < x2 < x1 + d/2) =
∫ ∞

–∞
f (x1)

∫ x1+d/2

x1–d/2
f (x2)dx2dx1

=
∫ ∞

–∞
f (x1) (F(x1 + d/2) – F(x1 – d/2))dx1

≈
∫ ∞

–∞
d · f (x1)2dx1.

(7)
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Figure 1 Efficiency E as a function of number of ordered samples n

Figure 2 From 5 quantum events, 4 time differences can be formed and subsequently ordered. In the
illustrated example we have t3 – t2 < t4 – t3 < t5 – t4 < t2 – t1, which is just one of 4! = 24 equally possible
orderings

We shall “fix” such collisions as they appear, using stored random bits. If two samples
are deemed equal we can consume a random bit that was previously extracted: if the bit
has value 0, adjust the second value in the identical pair with a small value +ε < d and if
the value is 1, adjust the first value with +ε. This procedure will reassign a valid order and
the randomness extraction method can proceed, at the cost of 1 random bit per collision.
In most cases it is advantageous to use one saved bit for each collision rather than dis-
carding the whole block, since, e.g., for n = 65, nominally floor(log2(65!)) = 302 bits can be
extracted.

In order to fix the situation when 3 time differences have the same value, we note that
each of the 6 possible orderings need to have the same probability. Consuming 3 random
bits can achieve this by adjusting the identical values by {(–ε, 0, +ε), (–ε, +ε, 0), (0, –ε, +ε),
(0, +ε, –ε), (+ε, –ε, 0), (+ε, 0, –ε)} for the bit values 000, 001, 010, 011, 100, 101 respectively,
as long as the value is not 110 or 111 (6 or 7, see Table 1). In such cases, a new set of 3 bits
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need to be consumed, i.e., the expected number of consumed bits is

〈bits used〉triple =3Ps + 6(1 – Ps)Ps + 9(1 – Ps)
2Ps . . .

=3Ps

∞∑
k=1

(1 – Ps)
k–1 · k

=3/Ps

=4,

(8)

where Ps = 6/8, i.e., the usable fraction of the possible bit values of the 3 bits we have drawn.

3 Experiment and results
3.1 Limitations and planning
Our contribution lies in delineating a protocol for randomness generation that does not,
in principle, hinge on what method is used for generating and detecting the quantum
events. Thus, when we tested the protocol in our lab we did not hesitate to use our ex-
isting and rather expensive equipment. A realistic device should take into consideration
cost, noise, size, power and other parameters, which we did not consider. More exper-
imentation is needed to see how cheaper, room-temperature devices will adhere to our
protocol assumptions, i.e., we assume events whose time-between-detection is indepen-
dent and identically distributed (i.i.d.).

Another consideration is if a continuous wave (CW) laser of pulsed laser is better for
generating the source photons. Although we have used a pulsed laser, it seems plausible
that using a CW laser can reduce the collision probabilities, especially when the experi-
ment is operating at a high photon rate.

We used an APE Pico Emerald pulsed laser at 80 MHz, attenuated to approximately
10,000 counts per second. We detected the photons using a superconducting nanowire
single-photon detector from Single Quantum (the EOS model). This detector can not dis-
tinguish between single and multiple photons in each pulse. The laser we used was attenu-
ated so that each event would fulfil our initial assumption, that all events are independent.
In our experiment, this meant that only one of 8000 pulses gives a click in the detector,
on average. The time of each detector click were then recorded using a quTag time tagger
(from quTools) with picosecond digital resolution, i.e., our precision was d = 10–12 s. A
list of n samples was formed from the n + 1 first recorded clicks, each record denoting the
time between two adjacent quantum events.

3.2 Results
Three experiments were performed using different list lengths, n = 2, n = 65 and n = 959
to establish orderings, each with a different efficiency tabulated in Table 2.

To establish a bit sequence from each of the possible (and uniformly distributed) n! or-
derings, the algorithm described in Listing 1 was used to establish a unique integer be-
tween 0 and n! – 1. The binary representation of such an integer was used to create the
output bits. All data processing was done after the experiment had finished.

Finally, the three bit sequences were fed into the NIST test suite [13], a number of algo-
rithms that checks binary data and reports “fail” if some non-randomness was found and
otherwise “pass”. In Table 3–5, we present the results for the data generated.
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Table 2 The values for n used and the corresponding (maximal) efficiency in bits per photon

n E , number of bits per photon

2 1/3 = 0.33
65 302/66 = 4.58
959 8122/960 = 8.46

Table 3 Proportion of passes for each individual test in the NIST test suite. The extraction used n = 2,
thus producing 1/3 bits of entropy per click

Frequency 10/10
Block Frequency 10/10
Cumulative Sums 1 10/10
Cumulative Sums 2 10/10
Runs 9/10
Longest Run 10/10
Rank 8/10
FFT 10/10
Non Overlapping Template 9.92/10*
Overlapping Template 10/10
Universal 9/10
Approximate Entropy 9/10
Random Excursions 5.0/5*
Random Excursions Variant 5.0/5*
Serial 1 10/10
Serial 2 10/10
Linear Complexity 10/10

*Average of multiple versions of the specific test.

Table 4 Proportion of passes for each individual test in the NIST test suite. The extraction used
n = 65, thus producing log2(65!)/66 bits of entropy per click

Frequency 10/10
Block Frequency 10/10
Cumulative Sums 1 10/10
Cumulative Sums 2 10/10
Runs 9/10
Longest Run 10/10
Rank 10/10
FFT 9/10
Non Overlapping Template 9.90/10*
Overlapping Template 10/10
Universal 10/10
Approximate Entropy 10/10
Random Excursions 6.0/6*
Random Excursions Variant 6.0/6*
Serial 1 9/10
Serial 2 10/10
Linear Complexity 10/10

*Average of multiple versions of the specific test.

4 Discussion
To establish the independence of the quantum events used in the randomness harvesting
process, we have set a relatively large average time-between-clicks using an attenuated
pulsed laser. The idea behind this is to let any quantum process “cool down”, so that loosely
speaking, any memory of a previous event is erased from the process that generates the
quantum events.



Almlöf et al. EPJ Quantum Technology           (2024) 11:80 Page 8 of 9

Table 5 Proportion of passes for each individual test in the NIST test suite. The extraction used
n = 959, thus producing log2(959!)/960 bits of entropy per click

Frequency 10/10
Block Frequency 10/10
Cumulative Sums 1 10/10
Cumulative Sums 2 10/10
Runs 10/10
Longest Run 10/10
Rank 10/10
FFT 10/10
Non Overlapping Template 9.85/10*
Overlapping Template 10/10
Universal 10/10
Approximate Entropy 10/10
Random Excursions 6.0/6*
Random Excursions Variant 6.0/6*
Serial 1 10/10
Serial 2 10/10
Linear Complexity 10/10

*Average of multiple versions of the specific test.

For a practical implementation, the independence criterion could alternatively be main-
tained by e.g., using parallel (but physically separated) source-detector setups.

Although we present a scheme for increasing efficiency in randomness harvesting, in our
study we have not explored at what (higher) frequency the quantum events are no longer
independent. Such undertaking, since using a higher quantum event frequency will also
increase the efficiency, will be very useful for randomness extraction. We hope that future
work will address this question.

To incorporate this method in a realistic device would require that the data could be
processed in real time. The most computation intensive steps include calculation of large
factorials and sorting, which could require tailored software since standard algorithms are
typically not suited for storing and manipulating large integers such as 65!. However, such
adaptations are straightforward and could be implemented on, e.g., a Field Programmable
Gate Array(FPGA).
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