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The mobility edge (ME) is a crucial concept in
understanding localization physics, marking the critical
transition between extended and localized states in the
energy spectrum. Anderson localization scaling theory
predicts the absence of ME in lower dimensional systems.
Hence, the search for exact MEs, particularly for single
particles in lower dimensions, has recently garnered
significant interest in both theoretical and experimental
studies, resulting in notable progress. However, several
open questions remain, including the possibility of a
single system exhibiting multiple MEs and the continual
existence of extended states, even within the strong
disorder domain. Here, we provide experimental evidence
to address these questions by utilizing a quasiperiodic
mosaic lattice with meticulously designed nanophotonic
circuits. Our observations demonstrate the coexistence
of extended and localized states in lattices with broken
duality symmetry and varying modulation periods. By
single site injection and scanning the disorder level, we
could approximately probe the ME of the modulated
lattice. These results corroborate recent theoretical
predictions, introduce a new avenue for investigating
ME physics, and offer inspiration for further exploration
of ME physics in the quantum regime using hybrid
integrated photonic devices.

Disorder-induced localization, a phenomenon initially
predicted by P. W. Anderson in 1958 [1], has been
a prominent topic in condensed matter physics [2, 3].
The scaling theory of localization [4] revealed that in
lower-dimensional disordered systems, all states become
localized, whereas in three-dimensional systems, localized
and extended eigenstates can coexist, resulting in the
existence of a critical energy Ec known as the mobility
edge (ME) [5]. Notably, when a quasiperiodic potential
replaces random disorder, such as in the Aubry-André
(AA) model [6, 7], a distinct picture emerges. This
model suggests an energy-independent critical metal-insulator
transition at a self-dual point, subsequently confirmed by
experiments conducted both on photonic [8] and atomic
[9, 10] platforms. However, due to its self-dual symmetry,
the AA model does not possess a ME. The existence of MEs

in one-dimensional (1D) systems is primarily conjectured
in more generalized models [11–35], serving as a catalyst
for numerous experimental investigations based on ultracold
atoms [36–38].

Recently, a significant advancement in the field of ME
physics has emerged with the introduction of Avila’s global
theory [39], one of his Fields Medal work. This novel
theoretical framework has uncovered a distinct class of exactly
solvable 1D models, where quasiperiodic on-site potentials
are incorporated with certain periods [40]. Referred to as
mosaic lattices, these models exhibit a range of compelling
features. Notably, unlike previous models employing random
or other quasiperiodic disorders, the mosaic lattice displays
the remarkable property of hosting multiple MEs while
breaking self-duality symmetry. Moreover, regardless of
the strength of the quasiperiodic potential, extended states
persist throughout the system –– a striking departure from the
previous findings.

Here, we conducted experimental implementation of
quasiperiodic mosaic lattices using integrated silicon
nitride (Si3N4) photonic circuits with complementary
metal-oxide-semiconductor (CMOS) compatible fabrication
technology [41–48]. By precisely engineering the on-site
potential of each lattice site and adjusting the in-between gaps,
while maintaining uniform hopping terms, we successfully
achieved the desired quasiperiodic modulation over a wide
tuning range at room temperature. Through single site
excitation of the photonic mosaic lattice in the strong tuning
regime, we observe clear signatures of multiple MEs, which
arise from the energy-dependent coexistence of localized and
extended states. The existence of MEs is further confirmed by
scanning the quasperiodic potential strength and probing the
average energy of the injected state. Our results showcase the
capacity of integrated photonics platforms to investigate ME
physics in a scalable and precise manner, with the potential to
explore and uncover unique quantum features depending on
bosonic coalescence [49–51] in quasiperiodic lattice models.

The Hamiltonian of the quasiperiodic mosaic model can be
described as

H = J
∑
j

(
c†jcj+1 + H.c.

)
+ 2

∑
j

λjnj . (1)

ar
X

iv
:2

30
6.

10
82

9v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  1

9 
Ju

n 
20

23



2

FIG. 1. Mobility edge in κ = 2 quasiperiodic mosaic lattice. (a) Schematic of the 1D quasiperiodic mosaic lattice lattice, exemplifying
the mobility edge phenomena in condensed matter physics. For the case of κ = 2, the energy of every second lattice site is modified in
accordance with equation 2, while the hopping constant J between lattice sites is held constant throughout. (b) Energy diagram illustrating
the dependence of eigenstate energies on quasiperiodic potential strength (λ). Each data point signifies the energy of a specific eigenstate at a
given potential strength, with color coding employed to represent the energy-dependent fractal dimension D2. The 1D photonic lattice under
investigation comprises 21 sites. (c) Real-space distribution of three distinct eigenstates at a disorder strength λ = 5: (i) the highest positive
energy eigenstate, localized predominantly at site 4; (ii) an extended state near zero energy; and (iii) the highest negative energy eigenstate,
localized primarily at site 8. The system exhibits two mobility edges, as described by equation (5), where eigenstates transition from localized
to extended upon crossing the mobility edge. (d) Sketch of the experimental setup. A 786nm laser is first prepared in TE mode and then
injected into the lattice via a lensed fiber. The figure shows SEM image of the fabricated device. The input waveguide is split into the mosaic
lattice and a monitor waveguide. The intensity distribution in the lattice is reflected by the grating couplers (red) and recorded through top
imaging.

Here, c†j is the creation operator at site j, J is the
nearest neighbor hopping term, and λj represents the on-site
quasiperiodic potential modulation, which is given by the
following formula,

λj =

{
λ cos[2π(ωj + θ)], j = κm,

0, otherwise .
(2)

θ is the phase offset during the modulation, ω is an irrational
number, for instance (

√
5 − 1)/2 in our case, and κ is an

integer determining the mosaic modulation period. When
κ = 1, the lattice reduces to the AA model with self-dual
symmetry and transition at λ = 1, whereas when κ ̸= 1,
the duality symmetry of the lattices is broken. Fig. 1(a)
demonstrates a 1D quasiperiodic mosaic model with κ =
2 modulation period. In our simulation and experimental
design, we set θ = 0 for the convenience, and J =
0.015 enabling wide tuning range of the potential amplitude
modulation λ.

Following Avila’s profound global theory [39], it has
been theoretically proved [40] that the mosaic model indeed
manifests energy-dependent MEs by computing the Lyapunov
exponent (see Supplementary Information for details), which
can be described by the following expression:

|λaκ| = J for E = Ec , with (3)

aκ =
sin(κp)

sin p
, E = 2J cos p (4)

the parametrization of the energy E via the real
(imaginary)-valued momentum p for |E| ≤ 2J (|E| > 2J).
A mosaic lattice with κ modulation period hosts 2(κ − 1)
MEs, which are distributed in energy spectrum around
E = 2J cos(πm/κ), where aκ = 0 and the extended states
survive at arbitrarily strong potential λ, which is a new
fundamental feature of mosaic lattices (see Supplementary
Information A.1). For the simplest yet nontrivial case of
κ = 2, the two MEs are given by

Ec = ±J/λ. (5)

In Fig. 1(b) we show the calculated eigenvalues of a 21-site
lattice versus the modulation strength λ based on our chosen
parameters. To characterize the MEs, we utilize the fractal
dimension [5], defined D2 = − limL→∞[ln⟨IPR⟩/ lnL]
via the inverse participation ratio IPR =

∑
j |ψi(j)|4

of eigenstates ψi(j), averaged over the energies Ei, to
distinguish extended (D2 → 1) and localized states (D2 →
0). The dashed blue lines represent the exact MEs for κ = 2
mosaic lattice as the transition between D2 = 0 and 1.

In Fig. 1(c), we showcase three distinct eigenstates intensity
distribution at a disorder level of λ = 5. We could see the
spatial distributions of the wave functions are exponentially
localized at disordered sites j = κm (shown for the
highest and lowest energy). For the extended eigenstate, the
particle tends to stay at the sites without potential modulation
(see Supplementary Information A.2), this also explains the
survival of extended states in the mosaic lattice at strong
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FIG. 2. Experimental probe of localized and extended states in κ = 2 mosaic lattice. (a) Real-space distribution of light intensity probed
every 200µm along the lattice, with light injected at lattice site 4. The observed confinement of light primarily at site 4 with minimal spreading
to neighboring waveguides indicate the strong localization due to overlap with the localized highest positive energy eigenstate depicted in
Fig.1(c). (b) Similar measurement for light injected at waveguide 8, corresponding to the highest negative energy localized eigenstate depicted
in Fig.1(c). The observed localization of light, consistent with the behavior described in Fig.2(a), emphasizes the strong overlap with the
localized states. (c) Real-space distribution of light intensity for light injected at site 15, exhibiting significant wave-packet spreading. Bar
plot below shows the light intensity on a logarithmic scale, measured after 1000µm of light propagation in the lattice. Unfilled bars represent
simulation results and colored bars indicate experimental measurements. (d) Inverse participation ratio (IPR) calculated for the three wave
packets, presented in Figs. 2(a), (b), and (c). Single-site excitations, overlapping strongly with localized states, maintain a high level IPR for
varying propagation lengths, while the one, overlapping with an extended state, as in Fig.2(c), exhibits IPR reduction with the propagation
distance. This behavior confirms the ME presence for a specific potential strength λ.

potential.

Experimentally, we implement the photonic quasiperiodic
mosaic lattices based on integrated Si3N4 photonics platform
(see Supplementary Information B for more fabrication
details) [52]. A scanning electron microscope (SEM) image
of the nanophotonic device is presented in Fig. 1(d). To
design the desired on-site potential of each modulated site, we
control the width of each waveguide according to numerical
vectorial mode solver [53]. We set 550 nm as the default width
for a flexible tuning range while maintaining single-mode
profile operation, and the modulated sites are designed to
yield the potential modulation at a given modulation level
of λ = 5, shown in Supplementary Information A.1 to be
enough to form all the MEs. The waveguide separation is
carefully designed to keep the hopping term uniform due
to the asymmetric coupling of different waveguide widths
(see Supplementary Information C for the design methods).
We choose the 4th, 8th and 15th inputs to probe different
regimes in the energy diagram. We adiabatically expand
the output array by a fan-out structure, and all the output
waveguides are coupled to grating couplers for the spatial
intensity measurement. An additional monitor waveguide is

fabricated for the facet beam profile imaging and polarization
control as our previous designs [54–56]. We also vary the
propagation lengths in the samples from 200 to 1000 µm with
an interval of 200 µm to probe the light dynamics in the
lattices.

The schematic of the experimental setup is shown in
Fig. 1(d). The photonic quasiperiodic mosaic lattice is probed
using a coherent laser at a wavelength of 786 nm, which is
prepared with horizontal polarization (TE mode). The light
is coupled to the lattice through a lensed fiber mounted on a
6-axis nano-positioning stage (Thorlabs NanoMax). The input
waveguide is divided into two paths: one serves as a monitor
waveguide for polarization control, while the other leads to the
injection site. The output intensity is top-imaged using a 40X
objective and directly measured by a charge-coupled device
(CCD) camera that records the reflected light from the grating
couplers. An example of image acquisition can be found in
the Supplementary Information Fig. S3.

We first probe the two localized states in κ = 2 photonic
mosaic lattice. Figs. 2(a) and (b) present the top images of
light intensity distribution of localized states every 200 µm
along the propagation distance. The grey circles mark the
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FIG. 3. Experimental probe of κ = 3 mosaic lattice of 34 sites. (left) Eigenvalue evolution with increasing quasiperiodic disorder strength
λ. Each point represents the energy of an individual eigenstate, color coded by the corresponding fractal dimension. As the disorder strength
increases, the system develops four MEs, separating three localization regimes I, II, III, see labeled panels, with two extended eigenstates
regimes in between highlighted by a fractal dimension approaching unity. Propagation of a single-site excitation probes different regimes of
the energy spectrum at a disorder strength of λ = 5. The eigenstates distributions in real space and their overlap with the corresponding choice
of single site excitation are given in the Supplementary Information E. I, II, III present the output spatial distribution of the light intensity
in a logarithmic scale after propagating 1000 µm in the lattice, using single-site excitation at the 21st, 30th, and 34th waveguide, respectively.
Unfilled bars represent simulation results and colored bars indicate experimental measurements, with the color code highlighting the light
intensity. The experiment shows good agreement with the simulation, where the light is exponentially localized in the excitation lattice site.
(bottom right) Experimental and numerical intensity distribution after propagating 1000 µm in the lattice for a single-site excitation at the 4th
lattice site, overlapping with the extended eigenstates in the energy spectrum. More spreading of light highlights delocalization transition in
the eigenstate spectrum, thus, exhibiting a ME. The inset shows the measured experimental distribution in a linear scale.

position of every site in the lattice. The figures clearly show
the strong spatial confinement of the injected light at site
4 and site 8. These two excitation cases correspond to the
highest and lowest energy eigenstates, shown in Fig. 1(c). As
a comparison, we also excite the 15th site to probe an extended
state in the lattice. Fig. 2(c) illustrates the light intensity
distribution in the lattice over a propagation distance of 1000
µm with both linear (top) and logarithmic (bottom histogram)
scale, confirming mostly odd-site occupancy. To quantify
the transport behavior, we calculate the IPR values for
spreading wave-packets in all three cases versus propagation
distance. The IPR values in Fig. 2(d) for the localized cases
remain close to 1 as the propagation length increases, while
the IPR value for the extended state shows the expansion
of the initial single-site wave packet (see Supplementary
Information A.3). Our measurements provide experimental
evidence of energy-dependent localization phase transition in
the mosaic model.

Then, we investigate the κ = 3 photonic mosaic lattice
comprising 34 sites at the same modulation strength. The
lattice contains four MEs given by the expression of Ec =
±J

√
1± 1/λ. The corresponding energy diagram is depicted

in Fig. 3, where the four MEs have divided the spectrum
into various regions. Here, we mark three distinct localized
eigenstates as I, II, and III (see Supplementary Information
E for intensity distributions of κ = 3 eigenstates), and we
probe the localized states with single site excitation. After
a propagation distance of 1000 µm, the evolution pattern
distributions are illustrated in Fig. 3. The experimental
data demonstrates remarkable agreement with the theoretical

simulation results (shown as blank bars in the figure),
confirming the exponential localization in the excited site.
Moreover, we also inject light into the 4th waveguide, to
probe the extended state. This particular injection position is
chosen since the site has a large overlap with the two extended
eigenstates, survived at such larger potential (also shown in
Supplementary Information E). Both linear and logarithmic
scale intensity distributions are exhibited in Fig. 3, and clearly
depict a marked contrast to the localized states in terms of
light evolution patterns. Our results prove the coexistence
of energy-dependent localized and extended states induced by
multiple MEs in the κ = 3 mosaic model.

We further confirm the existence of the ME by scanning
the quasiperiodic modulation strength in a κ = 2 mosaic
lattice and investigating the critical state near ME. As shown
in Fig. 4(a), we first locate the 14th eigenstate in the energy
diagram. As we vary the modulation strength from λ =
1.5 to 5, this eigenstate consistently remains close to the
upper ME. Considering the spatial intensity distribution of
the eigenstate, we select lattice site 21 as the excitation site
due to its larger overlap, and analyze the weights of different
eigenenergies by projecting the evolution pattern over all 21
eigenstates. Notably, the weight analysis is time-independent
when calculating with state vectors. However in our case,
since the phase information is missing during the intensity
measurement, we choose a relatively small propagation
distance as 100 µm to make the phase change negligible,
such experimental condition allows us to mimic a delta
function excitation. We measure five samples with different
modulation potentials and record all the intensity distributions
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FIG. 4. Probing the mobility edge in κ = 2 mosaic lattice.
Panel (a) illustrates the spatial distribution of the 14th eigenstate,
which is found to have a significant overlap with the 21st lattice
site. This specific site is chosen for the application of single
site excitation to effectively probe the system. The overlaid inset
provides a detailed view of this eigenstate’s relative location in the
broader energy spectrum. It is noted that this eigenstate resides in
close proximity to the exact ME, as determined by the theoretical
model. The critical energy Ec is given by Ec = J

λ
, wherein

the ME occurs. A number of samples are fabricated with varying
degrees of disorder strength and then subsequently probed for the
presence of the 14th eigenstate near the ME. (b) The color map
presents the weight overlap analysis between the eigenstates and the
output intensity distribution, obtained experimentally following the
single-site excitation at the 21st waveguide and after the wave has
propagated a distance of 100 µm through the lattice structure. It is
observed that the output intensity distribution shows a considerable
overlap with the 14th eigenstate, positioned near the ME across a
range of disorder strengths. (c) The final plot shows the constructed
energy level of the experimental excitation for various disorder
strengths, the measured energy conforms to the ME within the
system, thus providing further evidence for the transition between
extended and localized states in the mosaic lattice. The points
represent the experimentally measured data, while the line shows
analytical ME, Eq. (5).

{Iexp}. The weight {wi} for each sample is given by wi =
|⟨ψi|

√
Iexp⟩|2, where |ψi⟩ represents the i-th eigenstate under

the corresponding potential. The calculated results in Fig. 4(b)
clearly show the excitation state maintains a dominant overlap
with the 14th eigenstate while scanning the disorder level.
Based on the weight analysis, we estimate the energy of the
excitation state Eex =

∑
i wiEi with different modulation

amplitudes. These values are depicted in the energy spectrum

shown in Figure 4(c), which follow the trend of the κ = 2 ME
as the strength of the quasiperiodic potential increases.

In conclusion, we have experimentally implemented a
novel class of quasiperiodic mosaic lattices, offering a
crucial advancement in the quest for understanding ME
physics. Leveraging integrated photonics platforms, we could
design and realize the mosaic lattices in a scalable and
flexible fashion with fast prototype. We could effectively
probe the intricate behaviour of coexistence of localized
and extended states in the mosaic model, revealing crucial
insights into the energy-dependent localization transition.
Our work demonstrates that quasiperiodic mosaic systems
indeed exhibit richer physics than well appreciated random
disorder models, substantially extending our understanding
of the mechanisms driving phase transitions in disordered
systems. Our findings, therefore, underscore a significant
advancement in the field, with the potential to catalyze new
research directions in quantum physics, materials science, and
beyond.
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