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Quantum transport and localization are fundamental concepts in condensed matter physics. It is commonly
believed that in one-dimensional systems, the existence of mobility edges is highly dependent on disorder.
Recently, there has been a debate over the existence of an exact mobility edge in a modulated mosaic model
without quenched disorder, the so-called mosaic Wannier-Stark lattice. Here, we experimentally implement
such disorder-free mosaic photonic lattices using a silicon photonics platform. By creating a synthetic electric
field, we could observe energy-dependent coexistence of both extended and localized states in a finite number
of waveguides. The Wannier-Stark ladder emerges when the resulting potential is strong enough, and can be
directly probed by exciting different spatial modes of the lattice. Our studies provide the experimental proof
of coexisting sets of strongly localized and conducting (though weakly localized) states in finite-sized mosaic
Wannier-Stark lattices, which hold the potential to encode high-dimensional quantum resources with compact
and robust structures.
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The phenomenon of localization of electronic Bloch waves
was first studied by P.W. Anderson [1], where electronic
wave functions become exponentially localized due to dis-
order. For a three-dimensional (3D) system, there exists
a mobility edge (ME), which separates the localized and
extended states by a critical energy as a function of dis-
order level [2]. Lower-dimensional models, by replacing
disorder with a quasiperiodic potential, for example, the
Aubry-Andr-Harper model, can host both localized and
extended states, showing an energy-independent critical
transition at a self-dual point [3–5]. By further incorpo-
rating long-range hopping [6–15], varying onsite potential
[16–19], breaking self-duality [20–22], applying periodic
drive [23–26], considering flatband systems [27–30], or in-
troducing a quasiperiodic potential in mosaic lattices [31,32],
the modified model could support an energy-dependent ME
in the energy spectrum. So far, the existence of ME in low-
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dimensional systems has been experimentally confirmed with
ultracold atomic lattices [33–35]; it is natural to ask if random
or quasiperiodic potential is essential for a system to manifest
MEs.

A recent study [36] claimed that a disorder-free one-
dimensional (1D) mosaic lattice with Stark effect could
exhibit an exact ME, where such disorder-free localized states
can be tracked back to the famous Wannier-Stark lattice
[37–39]. By introducing a static electric field to the lattice, the
resulting potential may lead to exponential localization of the
wave function. With strong enough fields, the Wannier-Stark
ladder is recovered, and each energy level corresponds to a
localized eigenstate, while all the survived extended states
live at small enough energies. However, the theory is ex-
citing but also puzzling, as more recently pointed out by a
work of S. Longhi [40], that Avila’s global theory cannot
be applied here and Lyapunov exponents cannot be defined
for Stark potentials, going to infinity. In the thermodynamic
limit (when the system size goes to infinity), all states become
localized with the exception of few isolated extended states,
thus strictly speaking no disorder-free ME exists. Only under
a finite-height mosaic potential [41], can the Wannier-Stark
lattice manifest a pseudo ME, which can be experimentally
realized and probed.

In this Letter, we experimentally realize such finite-sized
disorder-free mosaic Wannier-Stark model, observe energy-
dependent coexistence of localized and extended states, and
probe the Wannier-Stark ladder in the photonic mosaic lat-
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FIG. 1. Localization of the Wannier-Stark ladder states in disorder-free κ = 2 finite-sized mosaic lattice in a synthetic electric field.
(a) Eigenenergy spectrum of the photonic mosaic lattice under different constant forces. The force is implemented by augmenting the potential
of the even lattice sites through Eq. (2). The lattice comprises of 11 sites, with a constant hopping parameter J = 0.01 among the sites.
Histograms show the intensity distributions of the eigenstates, localized slightly stronger than exponentially at even sites, in logarithmic scale
for (left) moderate F/J = 1 and (right) strong F/J = 4 force regimes. Lines show exponential fits. The states are indicated in the middle energy
diagram by their lattice site numbers. The strong field F/J = 4 is selected to detect the Wannier-Stark ladder, as at this point, the eigenstates
corresponding to high-energy levels in the system are localized, showing equidistant spacing in the energy diagram. In contrast, all the states
below the finite-size ME (indicated by a dashed blue line) are extended as light traverses the lattice. (b) A scanning electron microscope (SEM)
image of the nanophotonic device is presented, depicting the photonic lattice, denoted in light green, which features individual lattice sites
terminated with a grating coupler, accentuated in red, interconnected through a fanout structure. The scale bar shown in white has a length of
100μm.

tices. By utilizing a Si3N4 waveguide array with engineered
onsite potentials and nearest-neighbor hopping terms [42–45],
we create a synthetic constant electric field that localizes part
of the eigenstates in real space. The light intensity distri-
bution is directly probed through a single-shot top imaging
with a fanout structure and grating couplers. To verify the
coexistence of extended and localized states in the system,
we excite the lattice in both moderate and strong force
regime, and compare the inverse participation ratio (IPR) of
spreading wave packets. In the strongly localized regime,
we can directly excite a single mode in the lattice to probe
the localization eigenstates, with over 98% fidelities between
experimentally measured states and the corresponding eigen-
states. By calculating the overlap weights with respect to the
localized eigenstates, we reconstruct the Wannier-Stark lad-
der in the strong-field regime, demonstrating equally spaced
energy levels as predicted. Our work extends the under-
standing of the Wannier-Stark localization and ME physics,
in addition to providing a new platform for studying the
extended-localization transition, which offers a more scal-
able and precise approach to modulate the lattice parameters
at room temperature. Our results offer a promising avenue
for onchip high-dimensional quantum information encoding
[46–50], and will also inspire particle statistics induced quan-
tum correlation in ME studies by using multiphoton state
excitation [51–53].

Here, we consider a 1D mosaic lattice with Stark effect,
which can be described by the following Hamiltonian

H = −J
∑

n

(c†
ncn+1 + H.c. ) +

∑
n

εnc†
ncn, (1)

εn =
{

Fn, n = mκ , with integer m,

0, otherwise, (2)

where cn is the annihilation operator at site n, J is the
nearest-neighbor hopping term, εn is the onsite modulated po-

tential, which is further determined by a constant force F and
modulation period κ . This model introduces a Stark potential
on every κth site, and the value is linearly increasing along the
site number. Note that in the experiment, the total number of
lattice sites is always limited, which sets an upper bound for
the applied potential.

By studying separately the localized wave functions, hav-
ing most of their weight at n = mκ sites, decaying faster than
exponentially with distance, and large energies Em � Fmκ �
1 with the perturbation theory in J/Em and the corresponding
effective Hamiltonian with the projected out above localized
states [54], we have improved the results of Ref. [36], finding
the following pseudo-ME [the blue line in the middle energy
diagram in Fig. 1(a)] in a finite-size system at κ > 1:

E = EME = max

[
2J,

(
eJ

FκL

)1/(κ−1)]
. (3)

In Ref. [54] we have also provided κ − 1 exact plane-wave
states with the momenta p = qπL/κ , q = 1, . . . , κ − 1 and
antinodes at n = mκ , as well as shown that the rest extended
states have reduced values at n = mκ . The plane-wave states
are unaffected by the potential and form the subband of the
width 2J , with energies Eq = −2J cos(πq/κ ). All this is in
agreement with the analytical solution given in Ref. [40] for
the thermodynamic limit.

Equation (3) implies that in the strong-field regime or
large system size, the pseudo-ME will converge to 2J (at
experimentally available system sizes), and all extended states
share the property of small eigenstate coefficients at the sites
n = mκ with the potential [54], while the localized eigen-
states characterized by the exponential decay and IPR form
a Wannier-Stark ladder, as shown in Fig. 1(a).

To experimentally realize the mosaic lattice, we first
provide elaboration on the design of the photonic lattice re-
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quired to simulate the synthetic static electric field, which
corresponds to a linearly increasing onsite potential. We use
full-vectorial mode solver [55,56] to numerically simulate the
propagation constants of the waveguide. To illustrate this in
Ref. [54], we show numerical simulations of the onsite energy
for a single isolated waveguide with a fixed height of 250 nm
and varying the width, all relative to the energy at a width
of 500 nm. The fundamental transverse electric (TE) mode
is used in all the calculations. Our chosen operating point
enables a significant tuning range around the 500 nm width,
while also ensuring single-mode operation. We then express
the onsite potential V as a third-order polynomial expansion
of the waveguide width as

V (x) =
3∑

m=0

amxm, (4)

which helps us to back calculate the waveguide width at the
given modulation amplitudes.

In our experimental design, we have chosen a total number
of 11 waveguides, κ = 2, a constant force of F/J = 1 and 4,
along with a nearest-neighbor hopping term of J = 0.01. This
particular combination has allowed us to operate in both the
moderate- and strong-field limit of Fig. 1(a), thereby enabling
clear identification of both the finite-size extended states and
the Wannier-Stark ladder. In the very weak regime, the model
is simplified to the quantum-walk framework, which has been
experimentally explored [57]. For the lattice design, we solve
Eq. (4) to retrieve the widths of the modulated waveguides,
then engineer the onsite energy to increase it linearly every
second waveguide, as expressed by Eq. (2).

After determining the waveguide widths that render the on-
site potential throughout the lattice, it is important to mention
that in order to maintain a constant hopping term of J = 0.01
while modulating the onsite energy, the gaps between the
waveguides must be carefully designed. A dedicated section in
Ref. [54] is reserved for discussing the employed coupled
mode theory and the mode-solver procedure for asymmetric
coupled waveguides. It also provides detailed information on
the device parameters used for the nanofabrication. Another
section focuses on the device fabrication and the proximity
correction of the electron-beam lithography to realize the
dense structure of the photonic lattice [58,59]. Figure 1(b)
shows a scanning electron microscope (SEM) image of the
fabricated device; it comprises a photonic mosaic lattice
(highlighted in light green), in conjunction with a fanout
configuration of all the lattice sites. The fanout culminates in
grating couplers (highlighted in light red) that facilitate top
imaging for measuring the intensity in each lattice site. To
examine the excitation dynamics in the lattice, devices with
different propagation lengths are nanofabricated in intervals
of 200μm. In order to avoid any cross-talk between the ex-
citation sites, two uniform adjacent lattices are employed for
each length, with one tailored to excite the even sites and the
other to excite the odd sites.

Coherent laser centered at 786 nm is employed for the
excitation of the photonic mosaic lattice. The light is coupled
to the nanophotonic chip via a lensed fiber attached to a six-
axis nanopositioning stage. The TE mode of the waveguide
is selectively excited using a fiber-based three-paddle polar-

ization controller at the input. The output light intensity at
each lattice site is captured by the grating coupler termination
using top imaging with a 40× objective, and recorded using a
charge-coupled device (CCD) camera. Further information on
the design and numerical simulations of the fabricated grating
couplers, in addition to the top images acquisition and analysis
routine, can be found in Ref. [54].

FIG. 2. Moderate- and strong-field limits and IPR of single-site
excitations in the lattice. (a) Output intensity distribution compar-
ison for the single-site excitation at even (4th, 6th, and 8th) and
3rd waveguides, respectively. In the moderate-field regime (at the
propagation length of 600μm) F/J = 1, the low-energy even-site
excitation (4th) shows extended feature, while the rest of high-energy
states are still strongly localized. At strong fields (at the propagation
length of 800μm) F/J = 4 (bottom), even waveguide (4th) excita-
tion results in the localization of light, while the odd (3rd) waveguide
excitation leads to the spread of light to neighboring lattice sites.
(b) The wave-packet inverse participation ratio (IPR), extracted from
the data in (a), for various single-site excitation cases at F/J = 1 and
F/J = 4.
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FIG. 3. Localization of the Wannier-Stark ladder states, their fidelity at F/J = 4, and reconstruction of Wannier-Stark ladder. (a) Numerical
simulation of the 4th waveguide’s excitation in the lattice is showcased in the 3D plot, which demonstrates a strong overlap with the
first localized eigenstate of the Wannier-Stark ladder in Fig. 1. Experimentally measured (numerically calculated) intensity distributions
in log scale across all 11 lattice sites, measured at corresponding intervals of 200μm, shown by grey (empty) bars. We observe an
exceptional agreement between the simulated lattice and the experimental measurements, where the light is primarily confined to the 4th
waveguide with a profound overlap with the localized Wannier-Stark ladder eigenstate. (b) Fidelity of the even waveguide excitations to the
Wannier-Stark ladder eigenstates located above the pseudo-ME, extracted from the experimental intensities. The high values of fidelity
obtained from the experimental measurements indicate a strong overlap between the single-site excitations in the fabricated lattice and the
corresponding theoretical intensity distributions of the eigenstates. To investigate the propagation dynamics of the excitations, fidelity is
evaluated at various lengths with a step size of 200μm. (c) The calculated weights over different eigenenergies from the experimental data,
revealing the Wannier-Stark ladder structure with equally spaced energy levels.

To verify the coexistence of localized and extended states
in the system, we probe both moderate- and strong-force
regimes by exciting different sites in the photonic lattices. In
the moderate regime, there are actually two kinds of extended
states. As shown in Fig. 1(a), there always exists extended
states below the pseudo-ME, and part of the states above the
pseudo-ME show extended features due to a weaker modula-
tion amplitude. The upper panel of Fig. 2(a) demonstrates one
example of excitations above the pseudo-ME for the moderate
force regime. Specifically, we present the measured light dis-
tribution after 600μm propagation length, for even (4th, 6th,
8th) sites. With the increasing potential amplitude along the
lattice sites, the higher energy states (6th and 8th) clearly show
stronger confinement in the excitation site compared to the 4th
site. As a comparison in the strong-field regime, the 4th site
is already highly confined, and only the odd site excitation
[3rd in the lower panel of Fig. 2(a)] shows the extended
feature, which corresponds to contribution from states below
the pseudo-ME. In order to further explore the localization
properties of the lattice, we have computed the IPR, which
is a well-established measure in the field of condensed mat-
ter physics [60,61]: IPR = ∑

j |ψ ( j, t )|4 of the propagated
single-site excitation ψ ( j, t ). In particular, it provides a quan-
titative measure of the extent to which an eigenstate is spread
out over the entire system or is confined to a small region
[54]. The resulting IPR values are displayed in Fig. 2(b),
where we observe that high-energy excitations at even lattice
sites approach the limit of a single-site localization (IPR =
1), indicating the highly confined nature of these states. In
contrast, the 4th (moderate regime) and 3rd (strong regime)
waveguide excitation exhibits lower IPR values, indicating a
more extended character of this state. The distinct difference
between the moderate- and strong-field regime clearly shows

a strong evidence for the existence of energy-dependent ME
in the finite-size photonic mosaic lattice with Stark effect.

Then, we focus on the strong-force regime to probe the
Wannier-Stark ladder. Experimental measurements presented
in Fig. 3(a) exhibit the excitation of the 4th waveguide in
the lattice, corresponding to the first localized state in the
ladder of Fig. 1 above the finite-size ME in the strong-field
regime. The intensity distribution of light across all lattice
sites is monitored at regular intervals of 200μm. Evidently,
the majority of the light intensity is concentrated within the
4th site, in agreement with the theoretical predictions of the
Wannier-Stark ladder. The model predicts the existence
of eigenstates that are spatially localized as light prop-
agates within the lattice. Numerical simulation of light
dynamics, displayed in the 3D plot, is conducted utilizing
the experimental design parameters, whereby a single-site
excitation with considerable overlap with the Wannier-
Stark ladder’s eigenstates reveals the expected spatial
localization.

Similarly, we measure all the other localized eigenstates
above the pseudo-ME with single-site excitation. In order to
assess the quality of the experimental results, we evaluate the
fidelity between the measured output state intensity distribu-
tion Iexp and the corresponding theoretical ladder states Ieigen,
given by the following formula

Fidelity =
√∑

n Iexp
n × Ieigen

n∑
n Iexp

n
∑

n Ieigen
n

. (5)

We compare the fidelity of each excitation at different prop-
agation distances z. Figure 3(b) shows the fidelity of the
measured four Wannier-Stark ladder states beyond the ME, as
a function of the propagation length. At a strong-field regime
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characterized by F/J = 4, the measured fidelity surpasses
98%. This finding is significant as it demonstrates the relia-
bility of the theoretical models used to describe the system
under investigation. Additionally, the high fidelity indicates
that a single-site excitation is expected to yield an excellent
agreement between the output-state distribution measured ex-
perimentally and the corresponding theoretical Wannier-Stark
ladder states.

With the measured localized-state intensity distributions
(for example, at the propagation distance of 800μm), we can
reconstruct the Wannier-Stark ladder in the energy spectrum.
To achieve this, we calculate the overlap weight of different
eigenenergies by projecting the output distribution over all
11 eigenstates. Note that the measured intensity is strongly
localized, thus we can focus on the localized site and ignore
the phase information of the other lattice sites. The weight
{wi} is given by wi = |〈φi|

√
Iexp〉|2, here |φi〉 represents the

ith eigenstate. As shown in Fig. 3(c), we list all the weights in
a color map for four Wannier-Stark ladder states. The result
clearly reveals the dominant overlap in each energy level, and
forms a ladder structure with equally spaced energy levels.
We can directly map the Wannier-Stark ladder to different
spatially localized modes.

In conclusion, our experimental investigation of the
Wannier-Stark ladder and ME in a finite-sized disorder-free
photonic lattice has provided new insights into the funda-
mental concepts of quantum transport and localization in
condensed matter physics. Our use of a Si3N4 waveguide

array with an engineered onsite potential and nearest-neighbor
hopping rate allows us to create a synthetic electric field that
localizes part of the eigenstates in real space. By probing
the light intensity at each lattice site through a single-shot
approach using a fanout structure and grating couplers, we
are able to observe the coexistence of both extended and
localized states in the system. Our results offer experimental
evidence of recent theoretical works, and have demonstrated
the emergence of the Wannier-Stark ladder when the electric
field is strong enough. The potential applications of our devel-
oped photonic devices are vast and promising, as they offer
a compact and robust means of encoding high-dimensional
quantum resources, for example, the structure can be used to
encode dual-rail qubits or even qudits [48,62–65].
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