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Observation of Anderson phase in a topological photonic circuit
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Disordered systems play a central role in condensed matter physics, quantum transport, and topological
photonics. It is commonly believed that a topological nontrivial phase would turn into a trivial phase where
the transport vanishes under the effect of Anderson localization. Recent studies predict a counterintuitive
result, that adding disorder to the trivial band structure triggers the emergence of protected edge states, the
so-called topological Anderson phase. Here, we experimentally observe such a topological Anderson phase
in a CMOS-compatible nanophotonic circuit, which implements the Su-Schrieffer-Heeger (SSH) model with
incommensurate disorder in the intercell coupling amplitudes. The existence of the Anderson phase is verified
by the spectral method, based on the continuous detection of the nanoscale light dynamics at the edge. Our
results demonstrate the inverse transition between distinct topological phases in the presence of disorder, as well
as offering a single-shot measurement technique to study the light dynamics in nanophotonic systems.
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I. INTRODUCTION

Over the last decade, the field of topological photonics
has witnessed tremendous developments [1–4]. Inspired by
topological physics of charged electrons in condensed mat-
ter, the topological concepts in photonics have emerged from
the discovery of topological phases [5,6] that have been
subsequently studied in various systems [7–16]. Photonic
topological phases possess intriguing light-guiding behavior
from edge states which display inherent robustness against
disorder. Studying the topological properties of photonic sys-
tems enables a deeper understanding of light dynamics and
provides tools for designing photonic systems [17–19], such
as light sources [20–25], and robust quantum circuits [26–30]
with great prospects.

Recently, the role of disorder has been reevaluated due
to the discovery of the topological Anderson phase (TAP)
[31–38]. Unlike an ordinary Anderson insulator, where trans-
port is suppressed with increasing disorder strength, the
emergence of a TAP is reversely driven by disorder, implying
a transition from a trivial to a nontrivial topological phase.
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Such a TAP has been recently experimentally observed in
two-dimensional photonic systems [39,40] as well as one-
dimensional disordered atomic wires [41]. Observation of all
features of the TAP phase remains elusive. For example, the
larger Anderson localization length in two-dimensional sys-
tems makes it challenging to observe their bulk localization.
It is still debatable whether different types of disorder may
prevent the TAP from forming [42–44]. For instance, corre-
lated disorder [43] and incommensurate disorder [44] predict
opposite phenomena.

Here, we report on the experimental observation of the
TAP in a one-dimensional Su-Schrieffer-Heeger (SSH) lattice
[45] with incommensurate disorder. The integrated photon-
ics platform offers precise engineering of the SSH model
implementation [4], the lattice is inscribed in a nanophot-
nic chip with complementary metal-oxide-semiconductor
(CMOS) compatible fabrication technology [46]. A spectral
method is adopted to verify the zero-energy edge modes
with achievable one-shot detection. The light dynamics at the
edge is retrieved from our proposed loss-induced scattering
approach (LISA) with high fidelity. Our results provide ex-
perimental proof of TAP induced by quasiperiodic disorder
and serve as a tool to analyze the light dynamics, even with
disorder present in a lattice.

II. QUASI-PERIODIC SSH MODEL

Conceptually, the SSH model is the simplest system that
can exhibit topological trivial and nontrivial phases. These
two distinct phases, which are characterized by the winding
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FIG. 1. (a) Schematic of an SSH lattice with intracell and in-
tercell coupling amplitudes t1 and t2, respectively. At no disorder,
the lattice satisfies t1 > t2 condition, resulting in a band gap in the
energy spectrum with topologically trivial states in the upper and
lower energy bands. The intracell coupling is modulated through
an incommensurate disorder of strength V . The disorder follows a
sinusoidal function with an irrational number α for the period, which
is the ratio between two Fibonacci numbers. (b) Energy spectrum
E of the disordered SSH lattice as a function of the disorder strength
V/t1. Higher disorder strength forces the system to go through a topo-
logical phase transition, with closing of the band gap at V/t1 > 2, and
the appearance of zero-energy topologically nontrivial states with
nonzero generalized winding number Q.

number W , can be tuned by controlling the ratio between the
intracell and intercell coupling amplitudes. As schematically
shown in Fig. 1(a), the lattice can be described by the follow-
ing Hamiltonian:

H =
∑

n

(t1a†
nbn + t2b†

nan+1) + H.c. (1)

Here, a†
n(an+1) and b†

n(bn) are the creation (annihilation) oper-
ators at the corresponding sites in the unit cell with different
coupling amplitudes, and t1(t2) represents the intracell (inter-
cell) coupling strengths. In the integrated waveguide system,
the coupling amplitude is determined by the gap between
adjacent waveguides [47].

In the standard SSH model, if t1 < t2, the dimerized-
type chain enables topological nontrivial phases with winding
number W = 1, while for t1 > t2, W = 0. Here, our system
starts in a topologically trivial phase t1 > t2, with fixed value
of intracell coupling t1. Incommensurate disorder is added to
the system through the intercell coupling t2 = t2 + Vn. The
exact expression of this disorder is governed by the formula

Vn = V cos(2παn), α =
√

5 − 1

2
. (2)

With the incommensurate disorder added to the intercell
bonds, we further calculate the energy spectrum E of this
modulated SSH lattice versus disorder strength V/t1. In our
calculation, we set the waveguide number n as 1000, and
the coupling amplitude t1 = 2t2. As shown in Fig. 1(b), the
energy spectrum E is symmetric with respect to E = 0 due to
chiral symmetry, and as the ratio V/t1 is increased, two nearly
degenerate zero-energy modes appear at V > 2t1, check
the Appendix for more details about different regimes in
the energy spectrum. In our experiment, three values of V are
selected, namely, V = 0.2t1, V = t1, and V = 2.5t1, to explore
the effect of disorder. As indicated by the energy spectrum
in Fig. 1(b), the most intriguing phase transition happens
between regions II and III, where the closing band gap leads
to the appearance of zero-energy eigenmodes.

Analytically, for a disordered SSH lattice with chiral sym-
metry, we can introduce the generalized winding number Q, a
topological number to identify the TAP. Q can be expressed as

Q = 1
2 (1 − Q′), (3)

where

Q′ = sign

{∏
n

t2
1 −

∏
n

(t2 + Vn)2

}
. (4)

A detailed theoretical derivation [38,48] leads to Q′ = 1 for
V < 2t1, and Q′ = −1 for V > 2t1. This result clearly shows
that V = 2t1 is the phase transition point in TAP, and the
existence of a zero-energy mode can be characterized by
the topological number Q = 1 (Q′ = −1) (see Appendix for
numerical calculation of Q in a disordered SSH lattice).

Experimentally, it is challenging to directly probe the
topological number Q [49]. The bulk-edge correspondence is
typically used to verify the existence of nontrivial topologi-
cally protected states in disorder-free lattice through imaging
of edge-localized light transmission. This approach, unfortu-
nately, cannot be extended to the SSH lattices with disorder,
even when the disorder strength is smaller than the critical
value of V < 2t1 [38]. Exciting the disordered lattice at the
edge leads to light dynamics localized at the edge, which
cannot be regarded as a signature of the TAP. Instead, spectral
analysis of the light dynamics near the edge of the lattice can
provide a clear signature of the Anderson transition as pro-
posed in Refs. [38,50]. Measuring the autocorrelation function
of a lattice site as the system evolves can reveal its energy
spectrum through the Wiener-Khinchin theorem:

C(E ) = 1

L

∫ L

0
dza∗

1(0)a1(z) exp(iEz). (5)

Here, a1(z) is the evolution of the light amplitude in the
excitation waveguide and L is the propagation length. Note
that C(E ) will be simplified to the sampled Fourier transform
of a1(z) if we only have the single-site input excitation. The
spectral analysis is a feasible method to experimentally verify
the existence of a zero-energy mode, with a suitable chosen
sampling rate.
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FIG. 2. (a) Schematic of the experimental setup. The source con-
sists of a continuous wave 795 nm laser. A fiber coupled polarization
controller is used to excite the fundamental TE mode of the edge-
waveguide in the SSH photonic lattice. The output of the chip is
free-space coupled to an optical power meter through a polarizing
beam splitter to monitor the excited polarization in the SSH lattice.
The light scattered from the induced scattering sites is top-imaged
using a microscope system equipped with a CCD camera. Inset:
LISA top image to measure the light dynamics in the SSH photonic
lattice. Intensity samples are taken every 25 μm. In total, 700 μm
propagation length was considered for the evaluation of the results,
with the full data-set included in the Appendix. (b) SEM image of
integrated photonic circuit, where the input waveguide branches to
the SSH lattice and a reference port. (c) Magnified SEM image of the
LISA structure to sample light intensity in a single nanowaveguide.
The white arrows indicate the location of LISA structures. The scale
bars in (b) and (c) correspond to lengths of 50 μm and 5 μm,
respectively.

III. EXPERIMENTAL OBSERVATION OF
ANDERSON PHASE

The schematic of the experimental setup is shown in
Fig. 2(a). We fabricate our topological photonic lattice us-
ing a Si3N4-based platform. The coupling amplitude of the
waveguide is numerically simulated, see the Appendix for
more details related to the lattice design, simulation, and
fabrication. The waveguides’ spacing in the lattice is selected
according to the coupling amplitude modulation between lat-
tice sites. In total, there are 15 waveguides in the SSH lattice.
The usage of an odd number of waveguides in our lattice does
not change the physics through introducing a defect, as the
waveguide at the opposite end of the device is far from the
excitation site. The number of lattice sites is chosen based on
numerical simulations, allowing for light localization at the
edge with a finite number of lattice sites, at the same time
providing a feasible experimental implementation. We use a
coherent laser source centered at 795 nm to excite the lattice.

The light signal is coupled to the nanophotonic chip with a
lensed fiber, mounted on a 5-axis nano-positioning stage. The
transverse electric (TE) mode of the waveguide is selectively
excited using a fiber-coupled 3-paddle polarization-controller
at the input and a polarizing beam splitter at the output.
The input waveguide is split into two paths by an on-chip
Y-splitter [see Fig. 2(b)]. One path is directed to the input
port of the modulated SSH lattice. The evolution pattern of
the light along the propagation direction is top imaged by a
50X long working distance objective and then characterized
via a charge-coupled device (CCD) camera. The other path of
the Y splitter serves as a monitor for the coupling efficiency
during the measurement, where the output beam is collimated
with a 100X objective and then detected by a silicon-based
optical power meter.

The dimension of the Si3N4 waveguide is 600 nm ×
250 nm, with spacing between waveguides on the order of
150 nm, so using an optical microscope to identify and
analyze the light in individual waveguides is technically chal-
lenging. Here, we propose a method that enables monitoring
the nanoscale light dynamics using a LISA. The central idea
of the LISA is to deliberately introduce a periodic gap in the
excitation waveguide. This loss structure scatters a small ratio
of the light transmitted in the nanowaveguide at a specific lo-
cation, enabling its collection and imaging. To compensate the
loss in the excitation waveguide and preserve the state fidelity,
we introduce a uniform loss in the remaining lattice sites after
5 μm distance from the excitation waveguide scattering site,
which is much smaller than the coupling lengths in our system
(see Appendix). In such a way, the total loss introduced to the
photonic system can be considered near uniform, which has
little effect on the light dynamics [51]. Detailed analysis of the
scattering loss from the LISA and the state fidelity compared
to a lossless lattice can be found in the Appendix. A scanning
electron microscope (SEM) image of the LISA structure is
shown in Fig. 2(c). The inset of Fig. 2(a) shows top imaging of
a LISA structure to sample the intensity at the edge lattice site,
with compensating structures in the remaining waveguides.
We fabricate 32 LISA structures in the excitation waveguide
with a sampling period of 25 μm.

The full data set of LISA top images are included in the Ap-
pendix. We study three groups of disorder strengths: V/t1 =
0.2 and 1 correspond to the trivial states with zero topological
number, while V/t1 = 2.5 corresponds to a topologically non-
trivial state with nonzero generalized winding number Q. The
three disorder strengths reflect the three operating regimes
shown in Fig. 1(b). In the excitation waveguide of the SSH
lattice, scattered light spots can be clearly observed using top
imaging [Fig. 2(a) inset], the intensity for different scattering
sites along the propagation direction is recorded using a CCD
camera.

To construct the energy spectrum of the propagating state,
both field amplitude and phase information are needed. The
phase information is typically lost in an intensity-based imag-
ing experiment. We follow the procedure highlighted in
Ref. [38] to retrieve the full amplitude in the excitation site:
(a) excite the edge waveguide, (b) monitor the intensity of
light evolution using the fabricated sampling structures, and
(c) calculate the field evolution by taking the square root of
intensity, with an appropriate sign.
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FIG. 3. (a)–(c) Simulated light-intensity evolution in each waveguide of an SSH photonic lattice for three disorder strengths V/t1 = 0.2, 1.0
and 2.5, respectively. (d)–(f) show the experimentally measured field amplitude in the edge-waveguide reconstructed from the intensity
measurement. The solid lines correspond to the simulated field evolution for different disorder strengths. (g)–(i) show experimentally measured
energy-spectrum of the edge lattice-site. The solid lines show the simulated energy spectrum, showing good agreement with the experimentally
measured data. The spectral method clearly reveals the presence of a zero-energy peak at higher disorder strength V/t1 > 2, corresponding to
a non-zero generalized winding number of the Hamiltonian. All the presented results are fitted using only one free-parameter corresponding to
a waveguide loss including the loss elements of 10.6 dB/mm.

The phase will experience a π jump when the light is fully
reflected at the boundary of the lattice. This simplifies the
task of calculating the energy considerably, with no need of
applying a sophisticated technique for phase retrieval [52],
since two binary phase values are involved, namely, 0 or π .
The sign of the field can be determined through modeling the
fabricated lattices. The phase jump occurs when the light is
reflected by the boundary of the lattice; more details about
the sign of the field amplitude in the edge site are given in
the Appendix. Owing to the robustness of the topological
circuits, the exact gaps and coupling amplitudes in the design
of the fabricated circuits are used in the model, with only the
waveguide propagation loss as a free parameter. The light in-
tensity samples are taken at 25 μm sampling period, matching
the fabricated structures. Figures 3(a)–3(c) show the simu-
lated dynamics of an edge-excited lattice for three disorder
strengths V/t1 = 0.2, 1.0, and 2.5. The light dynamics show
oscillation near the edge waveguide, thus considering edge
localization alone cannot provide a clear signature of the TAP.

Figures 3(d)–3(f) show the experimental and the simulated
field amplitude for the three disorder strengths. The effect of
including the LISA elements is considered in the field ampli-
tude evolution simulation to match the experimental data as
the excited-state evolves in the lattice. The experimental field
amplitudes show good agreement with the simulated SSH lat-

tices, the main source of deviation comes from the scattering
site (50 nm gap) transmission efficiency. Characterizations of
the scattering-elements and fabrication accuracy are discussed
in the Appendix. The experimental and simulated energy
spectrum |C(E )|2 for the three selected disorder strengths are
shown in Figs. 3(g)–3(i). An energy gap is open in the system
for disorder strength (V < 2t1) [see Fig. 1(b)], resulting in no
zero-energy state. This is represented in Figs. 3(g) and 3(h)
with |C(E )|2 not displaying a marked peak centered around
E = 0. Above the critical point of V = 2t1, the energy spec-
trum shows a clear zero-energy peak indicating the TAP at
such disorder strengths. The demonstrated results show that
in an SSH model with quasiperiodic disorder, the Anderson
phase transition occurs. The transition is associated with a
nonvanishing topological number Q, which counts the num-
ber of topologically protected edge states [38,53]. Q takes
a value of 0 for V < 2t1 and 1 for V > 2t1. The spectral
measurements in Fig. 3 demonstrate that such a transition
with nonzero topological number can be discovered through
detecting the zero-energy peak in the spectrum of the edge
state autocorrelation function. To further prove the robustness
of the experiment, we in total measured 18 devices, 6 for each
operating regime in Fig. 1; the results are shown in Fig. 4.
Even for devices on various fabrication runs, a consistent
Anderson phase transition can be observed. The transition of
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FIG. 4. Robustness of topological transition. Ratio of the spectral
components of the zero energy state to the first excited state, at
different disorder strengths V/t1 = 0.2, V/t1 = 1, and V/t1 = 2.5. In
total, 18 devices were tested, six devices for each operating regimes
in Fig. 1. A consistent Anderson transition can be observed, even
for devices on different fabrication runs. The discrete transition to
the nonzero generalized winding number Q between the trivial and
nontrivial regimes provides robustness against local disorders due to
fabrication, with no statistical overlap between the two regimes of
trivial and nontrivial states.

the generalized winding number Q between the trivial and
nontrivial regimes gives resilience against local disruptions
due to fabrication. The Appendix contains the whole data set
of all the devices’ measured energy spectra.

IV. CONCLUSION

Topological photonic insulators show resilience to disorder
through edge states that are not susceptible to backscat-
tering, as they are protected on a topological level. With
sufficient disorder, these systems become topologically triv-
ial and all transport ceases to exist in line with Anderson
localization [54]. It is surprising that the opposite can also
be true [31,39,40]. The experiment presented here demon-
strates TAP on a nanophotonic device that implements the
SSH model with incommensurate disorders in the intercell
coupling amplitudes. The Anderson phase transition is val-
idated using spectral analysis of the zero-energy edge state
and by monitoring the light dynamics, based on sampling
the nanoscale light intensity in the SSH lattice. Our results
demonstrate the complex relationship between topology and
disorder. The ability to control the disorder strength pro-
vides an important tool in combining the ideas from random
lasers with disordered topological systems. The demonstrated
platform is compatible with standard CMOS fabrication
processes, enabling hybrid integration with III-V and two-
dimensional materials [55] to explore the physics of Anderson
topological phase transitions in the presence of interaction
with quantum emitters and nonlinear media.
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APPENDIX A: SU-SCHRIEFFER-HEEGER DISORDERED
PHOTONIC LATTICE

The dynamics in our system is described by a one-
dimensional Hamiltonian with real hopping amplitudes be-
tween different lattice sites [38],

Ĥ =
∑

n

(t1a†
nbn + (t2 + V cos(2παn))b†

nan+1) + H.c.,

(A1)
where a†

n(an+1) and b†
n(bn) are the creation (annihilation)

operators at the corresponding sites and α =
√

5−1
2 is the

ratio between two Fibonacci numbers α = qn−1/qn for the se-
quence q0 = 0, q1 = 1, qn+1 = qn + qn−1. The real constants
t1 and t2 are nearest-neighbor hopping amplitudes between
the lattice sites. V is a real-valued parameter to control the
disorder-strength in the lattice. At the limit of V = 0, our sys-
tem reduces to the standard SSH model with two topologically
distinct phases [45]. For t1 > t2, the system has a topologically
trivial band structure with zero winding number, while in the
case of t1 < t2 the system has a nontrivial topological band
structure with a nonzero winding number. While it is possible
to obtain closed form solutions for the winding number and
dispersion relation in disorder-free lattice [2], we use numer-
ical methods to calculate a generalized winding number Q in
our disordered system [38,53]:

Q = 1

2

(
1 − sign

{∏
n

t2
1 −

∏
n

(t2 + Vn)2

})
. (A2)

Figure 5(a) shows the generalized winding number for a dis-
ordered SSH lattice for different disorder strengths V/t1. The
simulation uses a 1000-site lattice, with the same coupling
parameters as the fabricated lattice in the main text (t1 =
0.0126 μm−1 and t2 = 0.0063 μm−1). The system exhibits
a topological phase transition at V/t1 = 2, between regions
II and III of Fig. 1 in the main text. To further highlight the
properties of different operating regimes in the energy band
diagram, we calculate the inverse participation ratio (IPR),
which provides a means of characterizing the localization of
different eigenstates in the system [50],

Il =
∑

n

(∣∣a(l )
n

∣∣4 + ∣∣b(l )
n

∣∣4)(∑
n

(∣∣a(l )
n

∣∣2 + ∣∣b(l )
n

∣∣2))2 , (A3)
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FIG. 5. (a) Topological number Q calculated for a SSH lattice
with 1000 lattice sites versus incommensurate disorder strength V/t1.
The system exhibits a topological phase transition at V/t1 = 2, corre-
sponding to a nonzero winding number for V/t1 > 2. (b) Numerically
computed IPR of the eigenstates versus disorder strength. The simu-
lation uses the same physical device parameters as in the main text,
with a topologically trivial phase at t1 = 2t2 and zero disorder V = 0.
At disorder strength V/t1 < 0.5, the majority of the eigenstates are
delocalized. At disorder strength V/t1 > 0.5, many of the eigenstates
become localized as indicated by the larger IPR, but some eigenstates
still possess an IPR value of zero, indicating full delocalization. At
higher disorder strength V/t1 > 2.0, all the eigenstates get localized.

where l is the eigenstate index and the sum is carried over
all lattice sites. Figure 5(b) shows the calculated IPR for a
disordered system with 1000 lattice sites; three regions are
identified at different disorder strengths V/t1. Region I: The
majority of the eigenstates are delocalized as indicated by IPR
values close to zero. Region II: The majority of eigenstates
are localized. Region III: All the eigenstates are localized as
indicated by IPR > 0.

FIG. 6. (a) Coupling amplitude of the intracell t1 bond, inter-
cell t2 bond, and three levels of quasiperiodic disorder strength V.
(b) Coupling strength per micrometer between two waveguides for
different spacing between them. The simulated data is fitted with
an exponential function with a decay constant of 0.0276 μm−1.
Panel (c) shows the real x component of the electric field for the
TE (transverse-electric field) even and odd modes supported by a
waveguide coupler.

APPENDIX B: CHIP DESIGN PARAMETERS

Following the guidelines provided by the theoretical model
highlighted earlier, we select three quasiperiodic disorder
strengths V corresponding to the three regions in Fig. 5.
Figure 6(a) shows the coupling amplitudes in the inter- and
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intradimer bonds for three V values, where α = (
√

5 − 1)/2.
The system is initially in the trivial state and is driven to a
nontrivial, topologically protected edge state at higher dis-
order strength. We design a photonic chip based on silicon
nitride (Si3N4) technology [56–58] to explore the physics of
the model at different operating conditions. The Si3N4 thick-
ness is 250 nm and the waveguide width is 600 nm. Each
lattice site in the SSH model will consist of a single Si3N4

waveguide, with SiO2 and air as bottom and top cladding,
respectively. The air cladding and the unequal waveguide di-
mensions in the x and y directions lift the degeneracy between
the two orthogonal modes supported in a single waveguide
[57], namely, the TE and transverse magnetic (TM) modes.
The chosen waveguide dimensions and cladding results in the
TM mode are weakly localized, so we focus on the TE modes
in the experiment. To tune the coupling strength between the
lattice sites, we modify the interdimer waveguide spacing. The
coupling strength per unit distance between two waveguides
has an exponential relation with the waveguide spacing [59],
as shown in Fig. 6(b). The coupling constants are calculated
from the difference of the effective refractive indices of the
odd and even modes in a two-waveguide cell (C = π�n/λ0).
Figure 6(c) shows the even and odd modes in a dimer of
two waveguides, where the odd mode has a slightly higher
effective refractive index than the even mode.

The use of the Fibonacci number in the paper is not unique,
other irrational numbers would suffice. However, our choice
of the ratio has important experimental significance. The cou-
pling constant has an exponential relationship with the gap
between the waveguides as shown in Fig. 6(b). The electron
beam resist used in the fabrication process, m-aN 2403, spins
to a thickness of 300 nm at 4000 rpm. This sets a limitation
on the aspect ratio of the fabricated structures (thickness of
silicon nitride is 250 nm). We limited the gaps in our structure
to be more than 80 nm for the 15 waveguide SSH lattices we
fabricated. The choice of α = (

√
5 − 1)/2 satisfies the criteria

described for the modulated values of the coupling t2.

APPENDIX C: SSH LATTICE FABRICATION AND
CHARACTERIZATION

The topological photonic circuits are realized using com-
mercial Si wafers covered with 3.3 μm SiO2 and 250 nm
Si3N4. The waveguide structures are fabricated by electron
beam lithography (negative-tone resist; 50 kV electron ac-
celeration voltage) and subsequent pattern transfer via dry
etching of Si3N4 (CF4-based reactive ion etching). Proximity
correction is performed to mitigate the effect of backscattered
electrons in dense waveguide array patterns. Eventually, the
samples are cleaved to allow for optical coupling to the Si3N4

waveguide side facets. Note that no additional cladding layers
are used in the presented experiments.

In modeling the light dynamics, only a single free param-
eter in fitting the experimental results (Fig. 4 in the main
text) is used; it corresponds to the waveguide field attenuation
factor of 0.95 per scattering site. All other parameters, such as
the coupling constants and the disorder strength, are directly
applied from the theoretical model and chip design param-
eters. To accurately measure the field transmission constant

FIG. 7. (a) Waveguide transmission as a function of the number
of defects. Experimental data is fitted with an exponential function
An−1, where A is 0.95 and n is the number of defects. (b) Scanning
electron microscope image of the fabricated device with three Y
splitters leading to four waveguides with different defect numbers
n = 1, 2, 3, and 4. The defects are highlighted by white markers, the
scale bar corresponds to a length of 100 μm. (c) Top image of the
chip side-facet. The light spots correspond to transmission through
the waveguides with different number of defects.

as a function of the defects, a photonic chip with a single
input and four outputs connected by three beam splitters is
fabricated. The four waveguide branches host n = 1, 2, 3, and
4 defects, respectively. Figure 7(a) shows the transmission in
the waveguides as a function of the number of defects, fitted
with an exponential function An−1, where A is 0.95 and n is
the number of defects. Figure 7(b) shows a SEM image of
the fabricated chip, where defects are highlighted by white
markers. Figure 7(c) shows a captured intensity image of the
light transmitted to the facet of the chip. The experimentally
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FIG. 8. (a) Schematic of the simulated structure, with two moni-
tors in the forward and backward directions highlighted by green and
red rectangles, respectively. (b) Forward and backward transmission
and reflection coefficients to the guided modes in the waveguide.

measured field loss is 5%, which is slightly higher than the
field-loss factor used in the model of 3%. The deviation is
attributed to the accuracy in achieving consistent 50 nm gaps
in the fabricated intensity sampling structures. The electron
beam resist thickness is approximately 300 nm, which sets a
limitation on etching high aspect-ratio structures in 250-nm-
thick Si3N4. The limitation in the gap fabrication is linked
to an added noise in the top intensity measurement data,
presented in the main paper.

APPENDIX D: TRANSMISSION AND REFLECTION
COEFFICIENTS

The loss in each LISA structure can be decomposed into
two parts: (i) light coupled to unguided modes, i.e., top and
bottom scattering, a part of which we can detect using a CCD
camera in our setup, and (ii) back-reflected light, which is
coupled to the single mode waveguide in the counterpropa-
gating direction. This back-reflection is typically very small,
which has nearly no effect on the evolution forward.

To confirm this assumption, we performed three-
dimensional finite-difference time-domain simulations. Fig-
ure 8(a) shows the structure of the simulated device whose
parameters correspond to the experimental parameters of the
chip. The bottom cladding is silicon oxide, while the top
cladding is air. The LISA structure represents a gap of 50 nm.
To accurately simulate the light dynamics accompanied by
scattering, we adopted an adaptive mesh configuration with a
mesh precision of 5 nm at the LISA structure. Two monitors,
denoted by the red and green frames, are utilized to record
the transmission and reflection of the single TE mode sup-
ported by the waveguide. The results are shown in Fig. 8(b).

FIG. 9. (a) Schematic of the simulated structure, with one mon-
itor to measure the backreflected light to the guided mode from the
end facet. (b) Computed reflection coefficient from the facet to the
guided mode in the waveguide.

The coupling of light to the backward propagating mode is
more than 300 times, two orders of magnitude, smaller than
the transmission forward. Moreover, the calculated intensity
transmission coefficient shows excellent agreement with the
measured experimental data. The simulation further stresses
a very minor impact of the backward propagating modes
on the overall device performance, as the contribution from
subsequent LISA structures decreases exponentially under
nonresonant and phase matching conditions.

We also consider the back reflection from the end facet
of the waveguide. Although at first glance the reflection in
such nanosized waveguides might seem to be higher than that
in the laser-written waveguides or optical fibers, this is not
the case. When an optical fiber is terminated, the return loss
is typically 3%, which originates from a mismatch between
the effective refractive index of the mode and the refractive
index of the air termination. The effective refractive index of
the nanosized waveguide neff ≈ 1.6 is comparable to that of
an optical fiber, which is lower than the bulk material index
of silicon nitride. We simulated our structure as illustrated in
Fig. 9(a): the waveguide is terminated by air, and the back
reflected light to the guided mode is measured. The line plot in
Fig. 9(b) shows that only 4% of the forward propagating mode
couples to the backward mode due to facet reflection. Such
facet reflection value is rather common for all the integrated
platforms (fs laser writing silica chip or CMOS compatible
nano photonic chips) [26,60].

APPENDIX E: EXTENDED TIGHT-BINDING MODEL

To account for backscattering at slit defects in the waveg-
uides, we extend the conventional tight-binding model for the
wave field evolving in the forward direction by introducing
its coupling to the backward propagating modes. In this way,
light dynamics in the waveguide array can be described by
two SSH-like subsystems, an and bn, with a numerically esti-
mated coupling of 0.3 percent between the two at each LISA
structure.

The forward evolution in the lattice is governed by the
equations

dan

dz
= −i(βan + t1an−1 + t2an+1), (E1)
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FIG. 10. Schematic of propagation line with forward A and back-
ward B subsystems coupled at LISA defects.

where t1,2 are the coupling coefficients between the waveg-
uides, β is the propagation constant in the waveguide. The
auxiliary equations capture the effect of coupling to the back-
ward mode as a result of scattering at each LISA defect
positioned at Zm:

an(Zm + 0) = tan(Zm − 0) + r′bn(Zm + 0). (E2)

Similarly, we write equations for the field propagating in the
reverse direction caused by back-scattering:

dbn

dz
= −i(−βbn + t1bn−1 + t2bn+1), (E3)

bn(Zm − 0) = tbn(Zm + 0) + ran(Zm − 0). (E4)

The constants in the auxiliary equations are determined from
the scattering matrix of the LISA structure that relates the
outgoing fields to the incoming ones:(

an(Zm + 0)
bn(Zm − 0)

)
=

(
t r′
r t

)(
an(Zm − 0)
bn(Zm + 0)

)
, (E5)

where r and r′ are the reflection coefficients from the left and
right, respectively, and t is the transmission coefficient,

A scheme in Fig. 10 illustrates the field propagation across
two LISA structures, which are repeated at equal separations
for the total propagation length L of the device. A and B
denote the amplitudes in the forward and backward SSH sub-
systems. The boundary conditions, with the only input in the
edge waveguide, imply A(−0) = (1, 0, . . . 0)T and B(L) =
(0, 0, . . . 0)T . To convert the boundary value problem into
the initial value problem, we search for the backscattering
amplitude B(−0) through the matrix multiplication. We define
transfer matrices for repeating segments of free propagation
and defect scattering. Parameters of the defect matrix M̂d are
extracted directly from the FDTD simulation for the funda-
mental TE mode in a silicon-nitride waveguide with a slit
defect, as formulated by Eq. (E5). Then the last interval,
comprising free uncoupled propagation at length Lp and a
point defect, is described by matrix M̂:(

A(L)
B(+0)

)
=

(
e−iĤLp 0

0 1

)
M̂d

(
1 0
0 eiĤbLp

)(
A(+0)
B(L)

)
, (E6)(

A(L)
B(+0)

)
≡ M̂

(
A(+0)
B(L)

)
, (E7)

where we have matrix exponentials, with Ĥ and Ĥb being
matrix Hamiltonians for the forward and backward SSH sub-
systems. We can sequentially redefine the matrix M̂m for the
repeating segments to write the amplitude relations in the
same way as in Eq. (E7),(

A(L)
B(0)

)
= M̂m

(
A(0)
B(L)

)
. (E8)

FIG. 11. Effect of scattering on the system performance. (a) In-
tensity distribution of the forward (black curve) and backward (red
curve) modes in the edge waveguide along the propagation direction
in arrays with LISA structures equidistantly spaced at 25 μm. (b) In-
tensity distribution of the forward (black curve) and backward (red
curve) modes in the edge waveguide along the propagation direction
at the ideal case of no scattering sites. (c) Intensity distribution
of the forward modes in the edge waveguide for two cases: LISA
structures equidistantly spaced at 25 μm (black dots) and continuous
exponential loss with decay factor of 243.725 μm−1 (red curve).

The full response of the system is then given by(
A(L)

B(−0)

)
=

(
1 0
0 eiĤbLp

)
M̂m

(
e−iĤLp 0

0 1

)(
A(−0)
B(L)

)
. (E9)
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FIG. 12. (a) Scanning electron microscope image of the SSH
photonic lattice with additional defects to sample the light intensity
in different waveguides. The defects are indicated by white markers,
the scale bar corresponds to a length of 10 μm. (b) Unit cell used to
calculate the state fidelity as the light propagates in the SSH lattice.
The unit cell has a length of 25 μm, the edge-waveguide defect and
the line-defect in the remaining lattice sites are located at 0 μm and
5 μm distance from the unit cell edge, respectively. (c) 2D plot of
the state fidelity after a propagation length of 800 μm for different
disorder strength V/t1 and ratio between the excitation waveguide
loss and the line defect loss.

As soon as B(−0) is found, we may reconstruct the evolution
across the system by solving the initial value problem.

Equipped with the theoretical model above, we performed
numerical modeling to confirm the negligible effect of the

FIG. 13. Sampling and energy spectrum. Light dynamics in the
edge lattice site measured continuously (solid blue line), sampled at
25 μm (red circles), and fitted from the discrete measurements using
cubic spline interpolation (dashed red line).

backscattering on the system performance, as visualized in
Fig. 11. Figure 11(a) shows the intensity distribution of for-
ward (black curve) and backward (red curve) modes in the
edge waveguide along the propagation direction in arrays with
25 μm LISA structures at V = 2.5t1. At the ideal scenario
of no scattering sites, the intensity distribution of the for-
ward (black curve) and backward (red curve) modes in the
edge waveguide along the propagation direction is shown in
Fig. 11(b). To compare the two cases, Fig. 11(c) shows the
forward mode intensity distribution in the edge waveguide
for two cases: equidistantly spaced LISA structures at 25 μm
(black curve) and continuous exponential loss with a decay
factor of 243.725 μm−1. We notice from the figures that the
coupling to the backward modes is negligible in the system;
additionally, the discrete scattering loss from the LISA struc-
tures can be approximated as a continuous exponential loss in
the system, which further emphasizes that the choice of the
sampling rate, and the minimum coupling to backward modes
at each LISA structure, which preserves the state fidelity
as detailed in the next section. Similar technique of etching
nanoholes in a topological photonic circuit consisting of ring
resonators was recently realized [60].

APPENDIX F: STATE-VECTOR FIDELITY FOR SSH
LATTICE WITH UNIFORM LOSS

The introduction of scattering sites in the SSH lattice
plays an important role in probing the light dynamics in
the nanosized waveguides of Si3N4, in addition to offering
a single-shot method to measure the correlation function.
The challenge with such an approach is the introduction of
nonuniform loss in a single site of the lattice, which can
alter the propagating-state fidelity. Our approach to combat
such an effect is demonstrated in the SEM image shown in
Fig. 12(a). In the reported SSH lattice, t1 = 0.0126 μm−1

and t2 = 0.0063 μm−1, corresponding to coupling lengths of
124 μm and 249 μm, respectively. Provided that uniform
losses are introduced to the entire SSH lattice on length
scales smaller than 1/t1 and 1/t2, the discrete losses from
the scattering sites can be approximated as continuous Beer-
Lambert relation affecting the whole lattice sites equally. In
the fabricated device, we sample the edge waveguide, then
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FIG. 14. Phase information of the edge lattice site. (a) Field
amplitude in the edge lattice site. The blue curve contains the phase
information while the red one takes the square root of the intensity.
(b) Phase of the amplitude; a phase jump of π occurs when the light
ray reflects off the lattice boundary.

introduce a uniform loss to the remaining 14 waveguides at
5 μm displacement along the propagation direction, much
smaller than the coupling lengths in the system. The whole
unit cell consisting of an edge-waveguide sampler and a uni-
form loss in the remainder of the lattice, is repeated at 25 μm
period. To verify the minimum effect of the loss elements
on the fidelity of the propagating states, we simulated the
fabricated lattices using the algorithm depicted in Fig. 12(b).
Light is injected through the edge waveguide and a unitary
evolution operator is applied to the system to advance the
state by 5 μm. After that, (1) loss is introduced to the input
waveguide, then the state is renormalized, (2) a unitary evo-
lution operator is applied to the system to advance the state
by 5 μm, (3) loss is introduced to the remaining lattice sites,
then state-renormalization, and, finally, (4) a unitary evolution
operator is applied to the system to advance the state by 20
μm. The algorithm is repeated to span the total device length
of 800 μm. The state fidelity is calculated through the inner
product with an output state from an identical lossless lattice.
Figure 12(c) shows a two-dimensional plot of the state fidelity
at the output of the device for different disorder strength V/t1
and loss asymmetry in the input waveguide compared to the
remainder of the lattice Lossarray/Lossexcitation−W G. The result

FIG. 15. Phase of the amplitude effect on the energy spectrum.
(a) Field amplitude in the edge lattice site. The blue curve contains
the phase information, while the red one takes the square root of the
intensity. (b) Energy spectrum exhibits a zero-energy peak if the sign
of the field is ignored (red curve), which should not be observed in
the trivial lattice case considered.

demonstrates that at such sampling period, with close to unity
ratio between the two loss factors in the system, the state
fidelity is close to unity.

To construct the energy spectrum from the autocorrelation
function, there are two important parameters to consider [61].
The first is the resolution of the energy spectrum, which is
directly related to the length of the sampling period. Our
method provides an attractive approach for constructing a
high-resolution energy spectrum through extending the length
of the device, at the same time enabling a single shot method
for achieving this. The second is the sampling rate relationship
with the spectral range of the constructed signal, given by the
Nyquist-Shannon sampling theorem [62]. Perfect reconstruc-
tion of the autocorrelation function is satisfied for energies
E < Esampling/2. Considering the energy spectrum of the sys-
tem [Fig. 1(a) in the main text], the chosen sampling period of
25 μm is carefully selected to enable long collection lengths
of the light dynamics, and at the same time provide enough
bandwidth to sample the first symmetric energy peaks of the
system with respect to the zero-energy point.

Figure 13 shows the simulation results of a sampled field
amplitude, 32 samples were taken in total using a 25 μm
step, similar to the experiment setup. The dashed red curve
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FIG. 16. Top intensity measurement of the scattered light from
SSH lattices at three disorder values V/t1 = 0.2, 1 and 2.5. The
total sampled-length of the autocorrelation function is 700 μm, with
25 μm sampling period.

is given by the one-dimensional cubic spline interpolation of
the discrete points. Comparing the recovered field distribution
to the continuous field sampling limit shown in blue, we con-
clude that the discrete data points in the experiment provide
a sufficient sampling rate to reproduce the continuous flow of
light as discussed earlier.

APPENDIX G: PHASE INFORMATION
OF THE EDGE STATE

To construct the energy spectrum of the propagating state,
both the field amplitude and phase information are needed.
The phase information is typically lost in an intensity-based
imaging experiment. The issue we are dealing with here is
to determine the sign of the amplitude. The π phase jump

FIG. 17. Full data set of extracted energy spectrum. Eighteen
devices were tested in total, six for each operating regime of the band
diagram at (a) V/t1 = 0.2, (b) V/t1 = 1, and (c) V/t1 = 2.5.

occurs when the light hits the boundary of the lattice (or full
reflection). The amplitude will gradually decrease to 0 and
then rise again. This zero point will indicate the flip point. In
the ideal case, we could extract the discrete points showing
the absolute values of the amplitude, then we can find that the
flip occurs whenever there is a stationary point (also the local
minimum). Figures 14(a) and 14(b) show the amplitude and
phase of the edge lattice site; the binary phase simplifies the
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task of calculating the energy considerably, with no need of
applying a sophisticated technique for phase retrieval.

It should be emphasized that the phase information in the
amplitude is essential to determine the zero-peak energy. If
we assume all the values to be positive (ignoring the phase
jump at the boundary), then the FT results will also change
accordingly, as exemplified in Figs. 15(a) and 15(b).

APPENDIX H: ADDITIONAL TOP-IMAGING DATA

In total, 28 intensity samples are measured for the edge
state as it propagates in the fabricated SSH lattices. The auto-
correlation function is collected for a total length of 700 μm
(total length of the lattice is 800 μm), with 25 μm sampling
period. In the main text (Fig. 3), only a subset of the data cor-
responding to a propagation distance of 200 μm is included;
the full data set is presented here in Fig. 16. The images were

collected with a CCD camera at an integration time of 1-2 ms,
with a signal gain of 100.

APPENDIX I: ENERGY SPECTRUM DATA
FOR ADDITIONAL DEVICES

Overall, 18 devices were examined, six for each op-
erating regime of the band diagram, to probe the energy
spectrum of the system at different disorder strengths:
V/t1 = 0.2, V/t1 = 1, and V/t1 = 2.5. The results are sum-
marized in Fig. 17. We identify a consistent Anderson
phase transition among devices manufactured on various
fabrication runs as the disorder increases. The robustness
of the topologically protected generalized winding number
Q, which distinguishes between the trivial and nontrivial
regimes, gives resistance against local disturbances caused by
fabrication.
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