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The current density in a superconductor with turnarounds or constrictions is non-uniform due to
a geometrical current crowding effect. This effect reduces the critical current in the superconduct-
ing structure compared to a straight segment and is of importance when designing superconducting
devices. We investigate the current crowding effect in numerical simulations within the general-
ized time-dependent Ginzburg-Landau (GTDGL) model. The results are validated experimentally
by measuring the magnetic field dependence of the critical current in superconducting nanowire
structures, similar to those employed in single-photon detector devices. Comparing the results with
London theory, we conclude that the reduction in critical current is significantly smaller in the
GTDGL model. This difference is attributed to the current redistribution effect, which reduces the
current density in weak points of the superconductor and counteracts the current crowding effect.
We numerically investigate the effect of fill factor on the critical current in a meander and conclude
that the reduction of critical current is low enough to justify fill factors higher than 33 % for appli-
cations where detection efficiency is critical. Finally, we propose a novel meander design which can
combine high fill factor and low current crowding.

I. INTRODUCTION

Mesoscale and nanoscale superconductors play a cen-
tral role in contemporary device configurations applied
in various research fields. Inhomogeneous current density
distributions, often termed current crowding, can occur
at geometrical features such as corners, bends and con-
strictions, and severely impact the device properties of
microwave resonators, filters and waveguides. Another
prominent example is superconducting nanowire struc-
tures, which is the crucial building block for realizing de-
vices capable of detecting light at the single-photon level
[1]. Due to their outstanding performance in terms of de-
tection efficiency, time resolution and low intrinsic dark
count rates, superconducting nanowire single-photon de-
tectors (SNSPDs) have found wide-spread applications
in, for instance, quantum optics, light detection and rang-
ing (LIDAR), biological imaging and astronomy [2–4].
Furthermore, SNSPDs can be embedded in photonic in-
tegrated circuits [5, 6], which allows for miniaturized im-
plementations of complex quantum information process-
ing architectures. In general, the detection mechanism
of SNSPDs [7] relies on operating the device relatively
close to its critical current to enable the transduction of
single photon absorption events into an electrical signal
at high quantum efficiency. Hence, for further optimiza-
tion of superconducting detectors and, more generally, of
superconducting device properties, it is necessary to un-
derstand and mitigate the impact of current crowding,
as the latter most commonly limits critical current and
device functionality.

∗ jlidmar@kth.se

Current crowding effects in superconducting nanowire
structures have been previously reported for the case
of nanowire meanders with high fill factors [8] and at-
tributed to inhomogeneous current distributions at the
bends within the London model [9]. Moreover, the im-
portance of the geometry on the critical current [10, 11]
and on the observed dark counts during SNSPD opera-
tion [12] has been highlighted. The application of mag-
netic fields has been proposed for probing and coun-
teracting critical current reduction due to crowding at
nanowire bends using time-dependent Ginzburg-Landau
simulations [13]. Several experiments have demonstrated
an asymmetric critical current with respect to a rever-
sal of the direction of an applied magnetic field perpen-
dicular to the plane of the nanowire device [14–16]. To
provide guidance for further device design optimization,
it is essential to benchmark different theoretical mod-
els related to inhomogeneous supercurrent distributions,
explore their limitations, and validate them with experi-
mental data.

This paper focuses on the nanowire hairpin, the ba-
sic building block of superconducting meanders, made
up from a single 180° bend connected to two leads. The
generalized time-dependent Ginzburg-Landau (GTDGL)
model is used to investigate the effect of the inner bend
geometry on the critical current. To verify the simula-
tions, the effect of an applied magnetic field on the criti-
cal current of such superconducting nanowire structures
is experimentally measured. Our results within the GT-
DGL model differ from those obtained with the London
model, demonstrating that the latter significantly over-
estimates the impact of current crowding on the critical
current in nanoscale superconductors. Hence, our results
provide guidance for geometrical device design to achieve
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nanostructures with current carrying capabilities close to
the material limits.

The paper is organized as follows. In Sec. II the cur-
rent crowding effect in the Ginzburg-Landau model is
studied for the simple case of an annulus disk geome-
try and compared with the London model. In Sec. III
the theoretical model and the numerical methods used
to simulate various hairpin geometries are described. In
Sec. IV the fabrication and experimental setup are pre-
sented. In Sec. V A simulations and experimental re-
sults for the critical current dependency on the applied
magnetic field are presented. In Sec. V B the current
crowding effect in the GTDGL and London models are
compared for various hairpin geometries. In Sec. V C the
critical current dependency on fill factor is studied, and
in Sec. V D we suggest a novel meander geometry to mit-
igate current crowding. Finally, Sec. VI gives a summary
and discussion of the results.

II. CURRENT CROWDING IN THE LONDON
AND GINZBURG-LANDAU MODEL

The supercurrent density is given by J ∝ |ψ|2(∇θ−A),
where ψ = |ψ|eiθ is the complex order parameter. In the
London limit the amplitude |ψ| is assumed constant, and
in the absence of vortices the phase θ is single valued.
If magnetic field fluctuations are neglected, formally by
letting the London penetration depth λ→∞, the current
pattern is described by an incompressible potential flow
J ∝ ∇θ, with ∇ · J ∝ ∇2θ = 0.

The current crowding effect has been thoroughly stud-
ied in Ref. [9] in the potential flow limit using the Lon-
don model. By using conformal mapping techniques to
compute the energy barrier for vortex crossings, it was
concluded that a turnaround or a constriction results in a
reduced critical current compared to a straight supercon-
ductor. Computing the vortex barrier to find the critical
current for a general superconducting geometry is diffi-
cult, but it is possible to simplify the calculations when
the smallest radius-of-curvature R is much larger than
the coherence length ξ, which is often the case in practi-
cal applications. In this case, the critical current is ob-
tained when the local critical current density is reached
somewhere in the superconductor. It is therefore suffi-
cient to solve the Laplace equation to find the critical
current.

In Ref. [9] it is shown that most 180° turnarounds
result in a significant critical current reduction and in
general sharper turnarounds tend to result in a larger
reduction. It is also shown that there exists an op-
timal turnaround geometry that does not reduce the
critical current compared to a straight superconductor,
within London theory. The inner boundary of the op-
timal bend is for x ≤ (2W/π) ln 2 parameterized as
y±(x) = ±(2W/π) cos−1 [exp{πx/2W}/2] (see Fig. 10 in
Ref. [9]), which takes the limiting value y± = ±W far
from the bend. This means that two meander lines must
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FIG. 1. Current crowding effect in the Ginzburg-Landau
model for an annulus area between concentric circles. (a)
Geometry with inner radius a and width W used in the calcu-
lation. A current I is induced into the superconductor (gray)
by setting k (see discussion below Eq. (2)). (b) Current as a
function of applied flux (blue curve) for inner radius a = 50ξ
and widthW = 10ξ. In the limit a�W the geometry may be
approximated with a straight superconductor and the analyt-
ical result from Eq. (3) provides excellent agreement (dashed
orange curve). For a = 25ξ and W = 25ξ (dash-dotted green
curve) the current crowding effect is non-negligible and the
critical current is reduced below Idep = 0.385I0. (c) Critical
current as function of the inner radius. The Ginzburg-Landau
model (blue curve) predicts significantly higher critical cur-
rents compared to the London model (dashed red curve). (d)
Current density along a radial cross section for the London
model (dashed red curve) and the Ginzburg-Landau model
(blue curves: k = 5 dashed-dotted, k = 7 dashed-double-
dotted, and k = 8 solid).

be separated by a distance of 2W in order to use this
design. The optimal turnaround geometry is thus ideal
in terms of current crowding. A drawback is that the
fill factor, defined as the fraction of area covered by the
superconducting film, is limited to 33 %.

The validity of the London model is limited to small
currents well below Ic. Currents close to the critical cur-
rent are outside this regime and hence results from the
London model do not necessarily apply. This motivates
study of the current crowding effect in the Ginzburg-
Landau model, which remains valid close to the critical
current.

To clearly demonstrate the differences in the current
crowding effect in the Ginzburg-Landau model compared
to the London model we consider a superconducting disk
geometry given by the annulus between two concentric
circles. The width is W , thickness d, inner radius a,
and coherence length ξ, as depicted in Fig. 1 (a). The
cylindrical symmetry of this geometry may be used to
simplify the time-independent Ginzburg-Landau model

0 = (∇− iA)
2
ψ + (1− |ψ|2)ψ, (1)
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into a non-linear ordinary differential equation by as-
suming that the superconducting order parameter ψ =
|ψ|(r)eiθ(ϕ), where r and ϕ are cylindrical coordinates.
Dimensionless units are used, as defined in Sec. III. The
resulting ordinary differential equation is

0 = r2 ∂
2|ψ|
∂r2

+ r
∂|ψ|
∂r

+ (r2 − k2)|ψ| − r2|ψ|3, (2)

where θ(ϕ) = nϕ. A circulating current may be induced
by threading a thin flux tube through the ring, or by
setting a nonzero winding number n of the phase, so that
k = n − Φ/Φ0, where Φ0 is the flux quantum. Isolating
boundary conditions are used on the superconductor to
vacuum interface, i.e. ∂|ψ|/∂r = 0. From the numerical
solution of Eq. (2) the supercurrent density is obtained

as J(r) ∝ |ψ|2(∇θ −A) = k|ψ|2/r.
Figure 1 (b) shows the calculated current I =

d
∫ a+W

a
J(r)dr in units of I0 = ~Wd/2µ0eλ

2ξ as a func-
tion of k. As seen there is a maximal current that can be
sustained by a cylindrically symmetric solution. Higher
currents necessarily break the symmetry by the nucle-
ation of vortices that start to cross the wire and lead to
dissipation in the system. For a geometry with large in-
ner radius compared to the width a/W � 1, the critical

current equals the depairing current Idep = 2I0/
√

27 =
0.385I0 and the curve is well approximated by the for-
mula for a straight superconductor [17]

I = I0
k

k0

(
1− k2

k2
0

)
, (3)

where the superfluid velocity vs ∝ k and k0 is a nor-
malization factor that sets the maximal current at k =
k0/
√

3. For a smaller ratio of a/W the critical current
is less than the deparing current Idep, and thus demon-
strates a non-negligible current crowding effect.

In Fig. 1 (c) results for the critical current (normal-
ized to I0) as a function of the inner radius are com-
pared for the Ginzburg-Landau and London models. In
general the critical current is significantly higher in the
Ginzburg-Landau model compared to the London model,
which shows that the current crowding effect is less pro-
nounced than previously reported in the literature. This
qualitative difference between the models is caused by the
current redistribution effect, which is shown in Fig. 1 (d).
For sufficiently large k the current density near the inner
boundary is large enough to cause a significant suppres-
sion of the superconducting order parameter |ψ|. This
suppression in turn limits the current density locally,
which forces the current to redistribute. This results in
a flatter current profile with smaller peak values, which
increases the critical current and therefore weakens the
current crowding effect compared to the London limit.

III. THEORETICAL MODEL

To study the current crowding effect in a general ge-
ometry we consider a superconductor with thickness d

U

W

H

B

FIG. 2. (a) A typical turnaround used in the simulations. A
uniformly distributed current density J is injected through
the lower metal contact (blue) and the current flows through
the superconductor (gray) to the upper metal contact. The
leg width is W = 14ξ, the head width H = 3W , and U varies
based on the fill factor. (b) SEM image of a hairpin device
with square and optimal turnaround. The scalebar is 200 nm.
(c – d) Experimentally measured critical current as a function
of magnetic field (blue diamond) fitted with simulation data
(green curve) for a 33 % fill factor square (c) and optimal
(d) turnaround (shown in the insets). Experimental data for
reversed current direction and reversed magnetic field (orange
circle) overlaps the positive current data (blue diamond).

much smaller than the London penetration depth λ, i.e.
d� λ, and width W much smaller than the Pearl length
Λ = 2λ2/d, i.e. W � Λ. In this regime the magnetic field
from the current passing through the superconductor has
little influence on the magnetic field dynamics [9] and it
is justified to make the approximation that the magnetic
field B is constant, normal to the superconducting sur-
face and equal to the applied magnetic field.

To simulate the superconductor we employ the
GTDGL model [18–20]

u√
1 + γ2|ψ|2

(
∂

∂t
+ iµ+

γ2

2

∂|ψ|2

∂t

)
ψ =

(
1− |ψ|2

)
ψ + (∇− iA)

2
ψ,

(4)

∇2µ = ∇ · Im{ψ∗(∇− iA)ψ}, (5)

A =
−By

2
x̂ +

Bx

2
ŷ, (6)

where ψ is the superconducting order parameter, A is the
vector potential, and µ is the electric potential. We make
a conventional choice for the material parameter u = 5.79
[18] and assume γ = 10. The dimensionless units are



4

chosen such that distances are measured in the coherence
length ξ, time is measured in τ = µ0σλ

2 where σ is the
conductivity, voltages are measured in v0 = ~/2eµ0σλ

2,
currents are measured in J0 = ~/2µ0eλ

2ξ, and magnetic
fields are measured in Bc2 = ~/2eξ2. Equation (6) is
a result of the approximation that the magnetic field is
constant and equal to the applied magnetic field B.

We simulate the GTDGL model for geometries such
as the turnaround presented in Fig. 2 (a). The super-
conductor is coupled to two metal terminals with oppo-
site normal current densities Jext, that control the cur-
rent flowing through the superconductor. This is mod-
elled by applying the boundary conditions ψ = 0 and
n̂ · ∇µ = Jext on the superconductor to metal interfaces.
The remaining boundaries are superconducting to vac-
uum interfaces and the boundary conditions are given by
n̂·(∇−iA)ψ = 0 and n̂·∇µ = 0 to ensure no supercurrent
or normal current flows across the boundary.

We solve the GTDGL equations (4) and (5) using a fi-
nite volume method on an unstructured Delaunay trian-
gulation [21, 22], where the edge lengths in the triangles
are at most one half coherence length. Link variables are
used for the magnetic vector potential A by introducing
U = exp

{
−i
∫
A · dl

}
and rewriting the covariant deriva-

tive as

(∇− iA)ψ = U∗∇(Uψ). (7)

This formulation of the covariant derivative preserves the
gauge invariance when discretized on a lattice [23]. The
electrical scalar potential µ is treated similarly for the
covariant time derivative. The discretized form of Eq. (4)
is solved using a semi-implicit Euler method and Eq. (5)
is solved with a sparse LU factorization.

IV. EXPERIMENTAL SETUP

Device fabrication was performed on silicon sub-
strates covered with thermal SiO2, relying on a room-
temperature reactive sputtering process of NbTiN with
stoichiometry optimized for single-photon detectors [24].
The NbTiN thin films (thickness 9 nm) were patterned
into nanowire structures via electron beam lithography
and reactive ion etching. The SNSPDs consist of hair-
pins with a width of W = 70 nm and a fill factor of
33 % (U = 140 nm). The leads are 50 µm long and con-
nected to a lumped-element inductor to avoid latching.
The detectors were mounted inside a closed-cycle dipstick
system (Attodry 2100) with He exchange gas at temper-
atures below 2 K inside a uni-axial field created by a su-
perconducting magnet and connected to coaxial cables
leading to room temperature. The SNSPD were oper-
ated using commercial control electronics (Single Quan-
tum Atlas) containing a bias-tee and a two-stage room
temperature amplifier. The measurement sweeps were
controlled using Python and critical currents were ex-
tracted by fitting a step-function using lmfit [25]. The
measurement configuration is schematically depicted in

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
B/Bc2
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0.40

I c/
I 0
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Circle
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Optimal

(b) (c) (d) (e)
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|
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FIG. 3. Simulation results from the GTDGL model. (a) The
simulated critical current as a function of the applied mag-
netic field for geometries with 33 % fill factor (filled markers)
and 50 % fill factor (hollow markers). A straight supercon-
ducting strip (blue diamonds) is added as a current crowd-
ing free reference. (b – e) Superconducting order parame-
ter showing the breakdown mechanics slightly above Ic. (b)
B/Bc2 = −0.1. Vortices nucleate on the outer boundary and
move across the nanowire. (c) B/Bc2 = 0. Vortices nucle-
ate at the start of the inner bend and create a phase-slip
line. (d) B/Bc2 = 0.025. Vortices nucleate at the tip of the
turnaround. (e) B/Bc2 = 0.1. Vortices nucleate on the inner
bend and leave the superconductor on the outer boundary.

Fig. 2 (a), whereas representative scanning electron mi-
crographs of the investigated devices are presented in
Fig. 2 (b). This device design is immediately relevant
for waveguide-integrated superconducting single-photon
detectors employed in nanophotonic circuits [26].

V. RESULTS

A. CRITICAL CURRENT DEPENDENCY ON
APPLIED MAGNETIC FIELD

An applied perpendicular magnetic field will, depend-
ing on direction, either increase or decrease the amount
of current crowding at the inner bend of a turn. This will
then change the energy barrier for vortex crossings and
lead to a lower or higher critical current of the structure,
and will show up as an asymmetry in Ic(B) about zero
field. For practical applications with both left and right
bends, a homogeneous magnetic field could reduce the
current crowding only at one type of bend. Still, from an
experimental point, this is a useful diagnostic of current
crowding in hairpin geometries as studied here, since it
relies on comparing the critical current in the same de-
vice at different fields, rather than different devices with
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varying geometries, which are susceptible to sample-to-
sample variations.

The critical current dependence on the applied mag-
netic field is investigated in both experiment and simu-
lation by extracting critical currents from IV curves for
different constant applied fields. The results from experi-
mental devices with fitted simulation data for the square
turnaround and the optimal turnaround are presented
in Fig. 2 (c) and (d), respectively. To fit the simula-
tion data dimensions were reintroduced to the current
by multiplying with I0 = WdJ0 and to the magnetic
field by multiplying with Bc2. We also added an empir-
ical constant offset Boff to the simulated magnetic field.
The best fit corresponds to Bc2 = 10 T, Boff = 70 mT,
I0 = 75 µA for the device with square turnaround, and
I0 = 67 µA for the optimal turnaround. These values
correspond to the estimated parameters ξ ≈ 5.7 nm and
λ ≈ 600 nm for T ≈ 2 K. Extrapolation to T = 0 using
BCS theory gives ξ(0) ≈ 5.1 nm and λ(0) ≈ 550 nm [17].
These are consistent with previously reported values for
NbTiN films [27, 28]. The assumed magnetic offset Boff

moves the simulation data peak curve slightly closer to
zero magnetic field and is needed for a good fit. The
origin of the offset is not known. However, it is unlikely
that it is due to the presence of a constant magnetic field
background as shown by the overlapping data points in
Fig. 2 (c – d). In the literature a stronger peak asymme-
try has been reported [14–16], which motivates further
study.

The simulation results in Fig. 2 (c – d) are in good
agreement with the experimental data, showing a larger
asymmetry for the geometry with sharp corners. In a
region around B = −1 T the simulations display a bump
which is not present in the experimental results. The
bump seen in the simulation data has previously been
reported in Refs. [13, 15, 29] and is attributed to forma-
tion of a vortex lattice. The precise shape and location of
bumps in this regime is likely to depend on the detailed
geometry of the device. One possible explanation for the
missing bumps in the experimental data shown in Fig. 2
(c – d) is that vortices move more freely for non-zero tem-
peratures. Another difference between experiment and
simulation is present for the square turnaround when a
positive magnetic field is applied, i.e. the simulation pre-
dicts a smaller critical current compared to experiment.
This difference is likely explained by the 90° corners be-
ing rounded in the experimental device, as seen in the
upper SEM image in Fig. 2 (b).

Figure 3 (a) shows simulated critical current vs mag-
netic field for different geometries: straight, circle, ellipse
with aspect ratio 1 : 2, square, and optimal according to
London theory. As expected from the symmetry of the
straight superconducting strip, its critical current is sym-
metric around B = 0. For the remaining geometries the
critical current is asymmetric around B = 0. As dis-
cussed this asymmetry is a clear sign of current crowding
being influenced by the screening currents induced by the
applied magnetic field.

For sufficiently strong negative magnetic fields, the
critical current of the turnaround geometries coincide
with the straight geometry, which is explained by the
weakest point being located on the legs. This is shown in
Fig. 3 (b), where it is seen that the first non-stationary
vortices nucleate on the outer boundary of the legs and
flow inward towards the inner boundary. For zero mag-
netic field, all smooth geometries at 33 % fill factor have
negligible reduction in critical current, which is consistent
with Fig. 3 (c) where the weakest point is in the start of
the inner bend. For small positive magnetic fields around
B/Bc2 = 0.05, the critical current is reduced compared
to the straight geometry, which shows that the magnetic
field aggravates the current crowding effect. This is seen
in Fig. 3 (d), where the weakest point has moved to the
tip of the turnaround as a result of current crowding.
For sufficiently strong positive magnetic field, the criti-
cal current for the turnarounds approach the value for the
straight geometry. In Fig. 3 (e) non-stationary vortices
nucleate everywhere on the inner boundary, which sug-
gests that the inner bend is less limiting for the critical
current.

B. CURRENT CROWDING IN GTDGL VS
LONDON

In Sec. II we showed that the current crowding effect
in the Ginzburg-Landau model is qualitatively different
compared to the London model when considering a sys-
tem of concentric circles. The difference between the
models is that Ginzburg-Landau takes the suppression of
the superconducting order parameter into account, which
results in a redistribution of the current density. The
current redistribution effect depends on the turnaround
geometry and we therefore investigate different geome-
tries.

In GTDGL model, we define the critical current as the
current at which vortices start to flow across the wire,
since the vortex motion will generate a voltage. In the
London model, we define the critical current at which
the vortex barrier for crossings is zero. For a bend with
radius of curvature R much larger than ξ, this will co-
incide with the current when the critical current density
is locally reached somewhere [9]. For simplicity the com-
parisons is restricted to geometries such that R ≥ 10ξ by
scaling up the size if necessary [30].

In Fig. 4 the reduction of critical current is compared
between the GTDGL model and the London model for
the different geometries. All geometries, except the opti-
mal geometry, display significantly smaller reduction in
the GTDGL model compared to the London model. This
shows that the London model overestimates the impact
of current crowding and turnaround geometry. From the
GTDGL simulations we may therefore conclude that for
sufficiently wide heads (large H in Fig. 2 (a)) the exact
shape of a rounded inner bend does not significantly af-
fect the critical current for fill factors up to 50 %. Defects
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I c/
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GL 50%
London 33%
London 50%

FIG. 4. Reduction of the critical current compared to a
straight superconductor. The reduction predicted by the
GTDGL model with 33 % fill factor (blue circle) and 50 % fill
factor (orange square) are compared with the London model
for 33 % fill factor (green triangle) and 50 % fill factor (red
diamond). All geometries have been rescaled such that the
smallest radius of curvature R ≥ 10ξ, which allows for direct
comparison between the GTDGL and London models with-
out any extra compensation factors due to small geometries.
For all geometries, except for the optimal, the London model
predicts a significantly larger reduction of the critical current
than the GTDGL model.

in the manufacturing process may be a larger contribu-
tion to the reduction than the geometrical form of the
inner bend.

C. CRITICAL CURRENT DEPENDENCE ON
FILL FACTOR

Figure 5 (a) shows the critical current reduction as a
function of the fill factor for the GTDGL simulations.
The fill factor is tuned for each geometry by changing
the spacing between the legs U while keeping W = 14ξ
fixed (see Fig. 2 (a)) and rescaling the inner bend to
leave the geometry unchanged. The critical current de-
creases as the fill factor increases, which is expected since
the current crowding effect becomes stronger for sharper
turnarounds. The numerical results for the critical cur-
rent of the rounded geometries display a similar reduction
as the experimental results in Ref. [8]. The latter were
based on devices with square inner bends that tend to be
rounded due to fabrication limitations which makes them
more comparable to the rounded simulation geometries.
Furthermore, the reduction in critical current is less than
what is expected from London theory which has been
seen experimentally in Refs. [31, 32]

The shape of the inner bend plays a role in how quickly
the critical current drops as the fill factor is increased.
As a result, the best choice of inner bend may change as
the fill factor increases. In the limiting case approaching

b

a

FIG. 5. (a) Reduction of the critical current compared to a
straight superconductor as a function of the fill factor. For
33 % fill factor the reduction of the critical current is negligible
for all smooth turnarounds. The critical current is reduced as
the fill factor increases and for 88 % fill factor all geometries
converge to the same critical current. (b) An example of a
meander with L-bends used to minimize the current crowding
effect, while simultaneously allowing an arbitrary fill factor.
The use of L-bends results in a changed aspect ratio with
a 6= b.

100 % fill factor it is clear that all radii-of-curvature are
zero, all geometries have the same shape and the critical
currents are equal. Figure 5 (a) can be used to determine
a tradeoff between the optical design for high detection
efficiency [33] and the suppression of the critical current
by varying the fill factor.

D. MEANDER WITH ARBITRARY FILL
FACTOR AND LOW CURRENT CROWDING

As shown in Sec. V C, the GTDGL simulations indi-
cate that the critical current of the structure is not as
sensitive to the geometry as previously reported. How-
ever, for high fill factors the current crowding effect still
leads to a considerable reduction of the critical current.
In the case of a standard meander composed of straight
lines connected with 180° turnarounds, there is a tradeoff
between having high critical current and a high fill fac-
tor. One possible solution is to increase the thickness of
the superconducting film at the bends in order to locally
reduce current density [34].

We propose a new meander design that eliminates
the tradeoff between critical current and fill factor while
avoiding the need for variable film thickness. The con-
cept uses L-bends, which are turnarounds consisting of
an extra 90° turn before the 180° turnaround, as depicted
in Fig. 5 (b). This design allows the fill factor near the
turnaround to be smaller than the fill factor of the light-
detecting meander lines, which makes it possible to use
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an arbitrary fill factor while allowing the turnaround to
be wider and have low fill factor. The downside of this
design is that the meander will be elongated due to the
extra space required for the L-bends and in general the
ratio b/a > 1.

The ratio b/a may for a large number of lines be ap-
proximated as a ratio between the pitch in the L-bend
PB and the pitch in the meander lines PM . Alterna-
tively it can also be approximated using the fill factor of
the L-bend ffB , the meander ffM and the ratio between
the width of the superconducting wire in the bend and
in the meander line k = WB/WM . Thus

b

a
=
PB
PM

= k
ffM
ffB

. (8)

In order to estimate the elongation of a L-bend meander,
we consider the limiting case where the meander lines
have width WM = W and 100 % fill factor, while the
L-bends have width WB = 2W to reduce dark counts
and allow for a 33 % fill factor. These dimensions gives
b = 6a and the meander area would increase by about a
factor of 3 to cover the same circular area as a traditional
meander.

VI. SUMMARY

We used the GTDGL model to explore the current
crowding effect in superconducting nanostructures. The-
oretical predictions are tested experimentally by com-
paring how the critical current varies with the applied
magnetic field for two distinct nanowire turnaround ge-

ometries. In comparison to the previously used London
model, we show that current crowding is substantially
less pronounced in the GTDGL model. This finding
is explained by the suppression of the superconducting
order parameter near bends, which causes current re-
distribution close to sharp turns. Within London the-
ory it is possible to design optimal turnarounds with-
out current crowding, but this restricts the fill factor to
33 %. Using the more accurate description provided by
the GTDGL model it is possible to achieve less than one
percent reduction for 50 % fill factor. We propose that
this marked difference in predicted critical currents con-
siderably loosens the design restrictions for a large range
of superconducting nanodevices and circuits. Hence, our
results pave the way towards devices with improved per-
formance and current carrying capabilities approaching
the material limits.
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