
Journal of Instrumentation

TECHNICAL REPORT • OPEN ACCESS

Efficient and versatile toolbox for analysis of time-tagged measurements
To cite this article: Z. Lin et al 2021 JINST 16 T08016

View the article online for updates and enhancements.

This content was downloaded from IP address 130.237.35.86 on 23/08/2021 at 10:04

https://doi.org/10.1088/1748-0221/16/08/T08016
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuAyXDEp4FY3Jktm92_-R_OONOWKny-72Ig8_bZVkowGyda-bu3dhNuAhJJMyUjFk1MsXz1M73ZudnOWxtoQkbh7MXxRFe2EAV1-kbvfg05nMtpo5wGmYSRKCv0kFOZ1wafspXSviiK2Rmc7IucUFsrZQYNI8j56i2X4XPNTqbHYcuPIBSKME25qfnweKjA0SMoyTT38_zuGFJKSA2WsRbnUedL91XLwUxb7O9rVrFjIEyLUDtQhyUv_0dXu0cDtRuodMxnU8Tirq_orlQdwYhRSvbrCO_0_ykKZwZz&sig=Cg0ArKJSzEp6dW59mLCh&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/short-courses%3Futm_source%3DIOP%26utm_medium%3DPDFBN%26utm_campaign%3DOctRegister

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

Published by IOP Publishing for Sissa Medialab

Received: June 3, 2021
Revised: July 16, 2021

Accepted: July 21, 2021
Published: August 20, 2021

TECHNICAL REPORT

Efficient and versatile toolbox for analysis of time-tagged
measurements

Z. Lin,𝑎,𝑏,1 L. Schweickert,𝑎,1,∗ S. Gyger,𝑎 K.D. Jöns𝑎,2 and V. Zwiller𝑎

𝑎Department of Applied Physics, Royal Institute of Technology,
Roslagstullsbacken 21, 114 21 Stockholm, Sweden

𝑏School of Precision Instrument and Opto-electronics Engineering, Tianjin University,
Weĳin Road 92, Tianjin, China

E-mail: lucassc@kth.se

Abstract: Acquisition and analysis of time-tagged events is a ubiquitous tool in scientific and
industrial applications. With increasing time resolution, number of input channels, and acquired
events, the amount of data can be overwhelming for standard processing techniques. We developed
the Extensible Time-tag Analyzer (ETA), a powerful and versatile, yet easy to use software to
efficiently analyze and display time-tagged data. Our tool allows for flexible extraction of correlation
from time-tagged data beyond start-stop measurements that were traditionally used. A combination
of state diagrams and simple code snippets allows for analysis of arbitrary complexity while keeping
computational efficiency high.

Keywords: Data processing methods; Detector control systems (detector and experiment monitor-
ing and slow-control systems, architecture, hardware, algorithms, databases); Simulation methods
and programs; Analysis and statistical methods

ArXiv ePrint: 2105.15117

1Authors contributed equally.
2Current affiliation: Department of Physics, Paderborn University, 33098 Paderborn, Germany.
∗Corresponding author.

c© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of
Sissa Medialab. Original content from this work may be used under the

terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this
work must maintain attribution to the author(s) and the title of the work, journal citation
and DOI.

https://doi.org/10.1088/1748-0221/16/08/T08016

mailto:lucassc@kth.se
https://arxiv.org/abs/2105.15117
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/16/08/T08016

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

Contents

1 Introduction 1

2 Software description 4
2.1 Software architecture 4
2.2 User interface (front end) 4
2.3 Execution of analysis recipe (back end) 7

3 Illustrative examples 8
3.1 Lifetime, start-stop, and correlation analysis 8
3.2 Simulation 10

4 Conclusion 12

1 Introduction

Extracting correlation from time resolved data [1] gives insights into the dynamics of a system under
study over more than 18 orders of magnitude, from picoseconds to hours, in a single experiment.
This makes it one of the most powerful tools for data analysis widely used in the sciences. Time
resolution better than 8 picoseconds is already available at the time of writing [2] and can be expected
to reach the femtosecond range in the near future [3]. In optics, the correlation among photon
detection events is often analyzed to investigate underlying physical processes [4, 5]. Examples
include (i) light detection and ranging (LIDAR), where time-of-flight measurements, a subclass of
correlation measurements, provide the distance to a reflective or scattering medium [6], (ii) random
number generation where the timing and probability of the events generate random values [7], and
(iii) characterization of quantum emitter properties and determination of the number of emitters
under study [8]. Correlation measurements are also required to characterize entangled states, be it
well-known two-photon entangled states [9, 10], more complex multi-photon entangled states such
as GHZ [11] or cluster states [12].

As an example, the usual experimental setup in quantum optics is based on the well-known
Hanbury Brown and Twiss (HBT) experiment [13], schematically shown in figure 1: a stream of
photons is directed at a beam splitter with click detectors at each output. Here, the use of a beam
splitter allows for detection events to be obtained at shorter time intervals than the detectors’ dead
time. Using a single detector limits the time resolution of the system to the detector dead time but
can still reveal a correlation on slower time scales [14].

Correlation between two click-detectors was historically measured with a time-to-amplitude
converter, where one detector starts a timer and the other detector stops it again, generating a time
interval value, as illustrated in figure 1a. After accumulating a significant number of them, these
time intervals can be plotted in a histogram. The recent advent of time-tagging techniques [15]

– 1 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

for photon detection events with timing resolution comparable to the coherence and lifetimes of
quantum emitters offers an alternative to the well established start-stop histograms obtained directly
with analogue timing electronics. In time-tagging, fast electronics record the occurrence of each
detection event with respect to an absolute time 𝑡0, generating a timetable of events from all detectors,
as illustrated in figure 1b. Rudimentary software offerings from manufacturers of these time-tagging
devices, however, often require that the analysis method is selected from a predefined list of options
ahead of time and only the resulting histogram is stored. This approach does not allow for more
complex experiments, like e.g. entanglement swapping [16, 17], quantum key distribution [18],
continuous variable entanglement [19], spin-spin entanglement [20] or teleportation [21], and only
a single method of analysis can be chosen per experiment.

When making full use of modern time-tagging hardware, instead of committing to an analysis
method before the start of the experiment, all timing information can be saved to disk. The resulting
time-tagged files can be analyzed after the measurement in various ways to extract correlation be-
tween the recorded channels. Depending on the experiment, time-tagged files can require terabytes
of storage space. This makes data analysis a major hurdle and specialized software is needed
to extract useful information in a reasonable time. Therefore, efficient correlation extraction and
processing of large data sets is still a widely encountered challenge in a broad range of applications
and research fields.

The importance of user-defined analysis using time-tagged data becomes apparent when looking
at an example in more detail: when logging the arrival times of single photons emitted by a quantum
dot along with the laser excitation events, we can extract the exciton lifetime, the biexciton lifetime,
the exciton emission auto-correlation, the biexciton auto-correlation, the time evolution of count
rates for exciton and biexciton, two-time correlation as well as cross-correlation between exciton
and biexciton. Using time-tagging, these results can be extracted by analyzing data from only one
experiment, not only saving time but also offering more reliable results since the data were acquired
under identical conditions [22].

We created a versatile toolbox, Extensible Time-tag Analyzer (ETA),1 for analysis of time-
tagged data, enabling extraction of a wide range of information from one experiment with high
efficiency.

So far, a modeling language designed to intuitively allow the specification of a particular
time-tag analysis method to be executed by software has been elusive. Researchers tend to use
a familiar general-purpose programming language to solve the problem at hand. The result is a
clustered landscape of very specialized analysis scripts. With ETA, the user specifies the desired
analysis method in a declarative style with a combination of graphical and traditional programming.
Automatically selecting an appropriate algorithm, a just-in-time compiler combines these two inputs
into an intermediate representation, which is then compiled into assembly code optimized for the
target computer’s architecture. This procedure optimizes for fast analysis of large time-tag files at
the cost of some upfront compilation time, while still maintaining flexibility.

1https://timetag.github.io/.

– 2 –

https://timetag.github.io/

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

While several software solutions for the analysis of time-tagged data have been made avail-
able [23], ETA offers four key advantages:

1. ETA uses an optimized compiler to automatically provide short analysis times. This allows
for correlation histograms to be viewed in real-time during the measurement. Direct feedback
for alignment or data preview is a sought-after feature commonly missing for time-tagging
since the data acquisition rate is too large to handle for standard software.

2. With our Instrument Designer, users can define the desired analysis method in a straight
forward way by drawing state diagrams. Built-in functions and Python code can be executed
whenever a new state is reached. This combination of state diagrams with custom code
execution balances ease-of-use and flexibility when designing complex analysis methods.

3. We disentangle the experiment from vendor specific code by providing a unified user interface
for the analysis of time-tagged data from all major time-to-digital converters.

4. ETA is open source and designed to grow with the help of the scientific community to rise to
the challenges of the future.

D1

D
2

a)

− 25 0 25
time delay (ns)

0

500

1000

1500

2000

2500

hi
st

og
ra

m
ev

en
ts

1.0 1.5 2.0 2.5
time delay (ps)

0

5

10

15

hi
st

og
ra

m
ev

en
ts

(M
ev

en
ts

)

0 20 40 60
sync ch2 delay (ps)

0

10

20

30

40

50

sy
nc

ch
1

de
la

y
 (p

s)

D1

D
2

D1

D2

− 25 0 25
time delay (ns)

0

500

1000

1500

2000

2500

hi
st

og
ra

m
ev

en
ts

b)

0 2 4 6 8

time (h)

0.0

2.5

5.0

7.5

10.0

k
ev

en
ts
/
s

ch 1

ch 2

Figure 1. Configuration and results for time correlation measurements with (b) and without (a) time-tagging.
(a) Correlating photons in time-to-analogue hardware yields the analyzed data directly with little storage space
used. (b) When time-tagging photon arrival times, many different analysis methods can be applied to data
from one experiment but a large amount of data is produced. Results depicted are: correlation, count rate,
lifetime, and two-time correlation.

– 3 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

We expect ETA to find uses in studies of single quantum emitters like atoms and molecules [24,
25], LIDAR [26], quantum entanglement [27–29] and fluorescence correlation spectroscopy mea-
surements [30], as well as quantum key distribution protocols [31, 32] where data from remote
detectors needs to be synchronized and correlated.

2 Software description

ETA combines a high-performance back end and a flexible, intuitive graphical user interface. The
front end is used to design an analysis method in a graphical programming workflow. As illustrated
in figure 2, it sends instructions to the back end, which compiles these instructions into optimized
code and performs the analysis of the time-tagged data. The result is sent back to the front end
for post-processing and displaying of the result. The user can describe how data is analyzed by
creating a Virtual Instrument: after entering the Instrument Designer environment, a state diagram
can be drawn where events, read from a time-tag file or even created on-the-fly, cause transitions
among states. Upon arrival to a state or invocation of a specific transition, a user-defined action
can be triggered. The specifics of the action are described in the coding panel on the right-hand
side of the Instrument Designer using Python-like syntax. Multiple Virtual Instruments can be
combined and used from within a Script Panel. There, additional data processing, analysis and
plotting can be performed on the histogram calculated by the ETA back end. The programming
language chosen for the Script Panel is Python. Standard functionality is provided for, amongst
others, lifetime, correlation and count rate — all possible in real-time (see also section 3). In case
a more specialized analysis method is desired, the user can build custom functionality by using
provided functions or embedded code blocks for fully customized analysis.

2.1 Software architecture

Due to its division into front end and back end, ETA can be used in a multitude of ways, resulting
in both cross-platform and cross-device compatibility. A WebSocket-based protocol is used for
communication between front end and back end, allowing the computational power of the back
end to be easily integrated into existing software. The front end is based on web-technologies to
offer familiar aesthetics, displayed in a standalone software. A web-hosted version is available for
mobile devices that support a browser. The back end installs as a Python package and provides
a library interface, allowing integration with an individual Python workflow and easy installation
across Microsoft Windows, Mac OS X, and Linux.

2.2 User interface (front end)

Main panel. The main panel, shown in figure 3, consists of a list composed of elements of one
of three types:

• Parameters are strings that can be defined by the user on the Main Panel and interpreted as
Boolean, integer, float or string in the Instrument Designer or Script Panel. In most included
Recipes a Parameter is used to define the path to the time-tagged data.

• Virtual Instruments are at the heart of ETA. With the Instrument Designer instructions can
be laid out inside the Virtual Instruments on how ETA analyzes time-tags. Each source of

– 4 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

Back end

Components:
 • REPL Server
 • WebSocket Server
 • ETA Run�me

Python with LLVM, numpy,
matplotlib, numba, etc.

Func�on: Execu�on of Recipe

Components:
 • Parameters
 • Script Panels
 • Instrument Designers

browser-based

Front end (GUI)
Func�ons:
 • Design of Recipe
 • Post-processing
 • Visualiza�on

Any language
supporting WebSocket
e.g. LabVIEW, C++,
Python, Javascript

Third-Party
Programs

Alterna�ve to ETA front end

Compa�ble correlators*:
 • Picoquant
 • qutools
 • Swabian Instruments

*more can be added easily

Hardware/File

Results

Instruc�ons

Time tags

Instruc�ons

WebSocket

Instrument Interface
(typically USB or File IO)

Figure 2. Software architecture of ETA. Time recording devices interact with the ETA back end via an
interface like USB or via a saved file. The ETA back end receives its instructions from the ETA front end.
Since the WebSocket protocol is used for the communication channel between back end and front end, a
user-developed program can easily replace or extend the included front end, allowing for integration into an
existing ecosystem.

time-tags, e.g. a measurement device, is represented as a Virtual Instrument. This allows the
combination of time-tags from multiple devices. A delay line or a virtual beam splitter (see
section 3) are further examples of Virtual Instruments.

• Script Panels are text editors with syntax highlighting for the Python language and are
used to manage the analysis. Here the user decides which files to read and which Virtual
Instruments to use. Also, it offers the possibility to do post-processing, secondary analysis,
and visualization of the results returned by the Virtual Instruments.

The instrument designer. The Instrument Designer is divided into a state diagram on the left-
hand side, e.g. figure 4a, and the Actions and Tools panel on the right-hand side , e.g. figure 4b.
In the state diagram, blue circles represent states. They can be placed by double-clicking or by
dragging out from an existing circle and can be named by double-clicking into the circle. There
must be a single state where the analysis starts, which can be defined by selecting a state and pressing
Shift+I (Initial). Connections between states, i.e. transitions (arrows), can be created by dragging
out from an existing state onto another or onto itself. If a state is created by dragging out from an
existing circle onto nothing, they will also be linked by a transition. Each transition must be labeled
with all channel numbers that trigger this transition separated by commas. This can be done by
double-clicking the transition. The Actions and Tools panel on the right-hand side defines what
happens when a certain transition is triggered. This if-statement is represented by a description of
the trigger followed by a colon and an indented block describing the Action. The trigger description

– 5 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

Figure 3. The Main Panel of ETA’s front end with a simplified count rate Recipe loaded. The list of
components shows three Parameters, two Script Panels, and two Virtual Instruments. A Script Panel can
be opened by clicking the associated Code button. An Instrument Designer can be opened by clicking the
corresponding button of the Virtual Instrument.

on the Actions and Tools side can be automatically created by clicking on a transition or a state and
pressing Shift+T (Trigger) and works as detailed in table 1.

Table 1. Trigger declaration. Triggers are declared in the script panel of the Instrument Designer.

trigger declaration meaning

A: When state A is reached.
--2-->A: When state A is reached via an event on channel 2.
B--1,2-->A: When state A is reached from state B via an event on channel 1 or channel

2.

To perform Actions when a Trigger fires, often a Tool must be defined with which the Action
can be performed. The most commonly used Tools are clocks and histograms which can be created
by writing CLOCK(clock_name) and HISTOGRAM(histogram_name, number_of_bins, width_of_bins), re-
spectively. A clock can then be started and stopped with clock_name.start() and clock_name.stop(),
while the recorded time difference can be entered into the histogram with histogram_name.record(
clock_name) after the clock has been stopped. These Actions must be placed in the indented block
of a trigger. Notably, the width of the bins can be set individually, thereby allowing e.g. logarithmic
bins for capturing fast and slow processes in the same evaluation.

– 6 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

2.3 Execution of analysis recipe (back end)

ETA is fast, efficient and compatible with a growing number of time-to-digital converters including
PicoQuant, qutools, and Swabian Instruments. The compatibility with different file formats is
provided through a flexible data loading layer. Below we highlight some of the algorithms and
design choices responsible for ETA’s efficiency and speed.

Algorithms. ETA automatically generates a highly optimized data processing program based on
the analysis instructions defined in the recipe using both state diagram and Tools and Actions in the
Instrument Designer. ETA accomplishes this by selecting and combining algorithms appropriately.

An N-way tournament sort algorithm [33] is used in the virtual channels, leveraging the fact
that the time-tags are already pre-sorted in every channel, and most of the analysis methods are
order-preserving. This means an event going into the delay line first comes out first, even if the
absolute timing was changed inside the delay line. Based on this observation, using an N-way
tournament sort can achieve a speedup of the time-tag analysis from a computational complexity
𝑂 (𝑚 log(𝑚)) to 𝑂 (𝑚 log(𝑛)), where 𝑚 is the total number of events and 𝑛 is the number of detector
channels, compared to the Quicksort algorithm [34], a fast algorithm in the general case. This
results in a speedup of log(𝑚)

log(𝑛) , which is typically 17x when doing correlation on a 1 GB time-tag file.
When performing correlation analysis, a ring buffer algorithm [35, 36] is used to reduce

computational complexity from 𝑂 (𝑚2) to 𝑂 (𝑚𝑘), where 𝑚 is the total number of events and 𝑘

is the average number of two-channel correlation counts within the maximum time delay in the
histogram. This results in a speedup of 𝑚

𝑘
, which can be several orders of magnitudes for large

time-tag files with high event rates.
If the default choice of algorithm for implementing the Tools and Actions does not suit the

user’s needs, an embedded block of code, which can be written in Python, can also be used in the
Tools and Actions panel. All of this code will then be combined and converted by Numba [37], a
static Python compiler, into LLVM [38] code and afterwards into fast machine assembly.

Optimization. Unlike most of the existing data analysis tools, which become unwieldy and
progressively slower as features are added, ETA uses a just-in-time compilation method. This
allows ETA to compile only the algorithmic methods required for the current analysis, resulting
in optimized native machine assembly code. Internally, ETA utilizes LLVM, a state-of-the-art
assembly code generator and optimizer, to generate an intermediate representation for the analysis
defined in the recipe. This takes into account the input time-tag file format and the variables defined
in the Virtual Instruments. Variables are converted to constants before execution whenever possible
to reduce the number of instructions at run-time. The intermediate representation is then translated
using optimization tricks such as branch table generation and function-call elimination. This yields
fast assembly code that runs directly on the target-CPU without an interpreter or virtual machine,
resulting in performance similar to optimized C/C++ code for a specific type of analysis, while
still maintaining flexibility via the Instrument Designer. Adding features does therefore not require
a re-write of the program and a hard-to-manage code base with several similar analysis-specific
functions that would have to be selected via computationally costly if-statements.

– 7 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

3 Illustrative examples

3.1 Lifetime, start-stop, and correlation analysis

a) b)

Figure 4. Lifetime analysis. (a) State diagram for lifetime analysis. (b) Actions and Tools for lifetime
analysis.

Performing a lifetime analysis means sorting time differences between a synchronization event
(sync) and the detection event, e.g. the arrival time of a photon. For a lifetime analysis, the state
diagram has two states, e.g. A and B, where a transition from A to B starts a clock to measure the
time difference and a transition from B to A stops this clock. The A → B transition (start) therefore
occurs with an event on the sync channel and the B → A transition (stop) occurs with an event on the
channel under investigation. If some photons are lost between source and detector, which is typically
the case, several sync events can occur consecutively. To record only the shortest time differences, it
is necessary to restart the clock on each sync event. We therefore, draw another transition from state
B to itself, labeled with the sync channel number. We then trigger the Action c1.start() with the
trigger B:, i.e. whenever we enter state B either from state A or from itself. And we trigger the Actions
c1.stop() and h1.record(c1)with the trigger A:, i.e. whenever we enter state A, in this case only from
state B. These are all the instructions specifying how ETA’s back end analyzes the time-tagged data.

To load the measurement data we need to create a representation of the hardware on the Main
Panel of the front end. Therefore, we create another Virtual Instrument, enter the Instrument
Designer and specify the name of the source and number of channels that should be read from the
file with RFILE(timetagger_name,[0,1,2]).

We then create a Script Panel which already includes the minimum example required to save
the histogram to file:

1 import numpy as np

2 cut=eta.clips("C:\\ Path_to_file \\File.timeres")

3 result= eta.run({"timetagger_name":cut})

4 histogram = result["h1"] # get list from result

5 np.savetxt("h1.txt",histogram) # save txt file

The whole analysis can then be executed by clicking the “Run”-button of the Script Panel. A more
sophisticated version of a Recipe for lifetime analysis is included with the software.

Another prominent measurement, the second-order intensity time correlation function defined
as 𝑔 (2) (𝑡) =

〈𝐼 (𝑡) 𝐼 (𝑡+𝜏) 〉
〈𝐼 (𝑡)2〉 is essential in characterizing quantum sources: as an example, single

photon emitters are identified with 𝑔 (2) (0) values reaching well below 0.5 [39]. Auto-correlation
measurements are also used in fluorescence correlation spectroscopy [40] and are often performed
to identify the number of single-photon emitters, as well as diffusion and blinking times [41, 42].

– 8 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

a) b)

Figure 5. Correlation analysis. (a) State diagram for correlation analysis. (b) Actions and Tools for correlation
analysis.

Formerly, simple start-stop measurements, that can be obtained with analog time to amplitude
converters, were used to extract a reasonable approximation [43] that can yield the same result at
𝑡 = 0, the value that is often of interest. In ETA, the start-stop Recipe can be easily made to simulate
the behavior of the dedicated electronics in the old days, and it works similarly to the lifetime
Recipe, by simply removing a reset transition.

With ETA, a real 𝑔 (2) (𝑡) measurement which contains more information than a start-stop
measurement (see figure 6), can also be easily achieved with a correlation Recipe.

Since ETA can automatically produce an optimized code that is fast enough to perform full
correlation, the only change required for the user is to specify in the Instrument Designer, that where
time differences between all events, not only the neighbouring ones, have to be recorded into the
histogram. This is done by allowing the clock to be started many times. Each started instance can
be individually stopped when an event on the second channel is encountered. Since Actions have
to take place when consecutive events occur on the same channel, both states A and B need a loop
back to themselves. If we label them with the same channel numbers as the transitions pointing at
them already, a second photon on the same channel will trigger another start of the clock in case of
state B and a stop of the clock, as well as a recording to the histogram in case of state A. This will
result in a correlation of the events on channel A with the events on channel B. A more sophisticated
version of a Recipe for correlation analysis is included with the software.

Figure 6a shows an example of a raw event stream. Arrows indicate the recorded time intervals
for positive (red) and negative (blue) time delay. As described before, a start-stop measurement will
consider each event only once. When resetting the start, the last event in a row of consecutive events
on the start channel will be used while the previous ones will be discarded. Since we can access
the full event stream when time-tagging, to perform correlation, we can reuse any detection event
to record time differences with all other events into a histogram. This is not possible with a simple
start-stop type measurement. In figure 6b we illustrate this with a correlation where the stopping
event is at most 6 time slots away from the starting event. Figure 6c shows a real-world example of
data obtained from recording the arrival times of photons from a single quantum dot. The data in
figure 6c has been normalized to the highest value in the correlation case for all three panels for easier
comparison. A value of 1 does not represent the Poisson level in this case. While the result close to
time delay 0 is similar between the start-stop evaluation with reset and the correlation evaluation,
only correlation of all photons with each other provides accurate results for long time delays.

– 9 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

D1

D2

D1

D2

D1

D2

a)

b)

c)

start-stop start-stop with reset correlation
ev

en
ts

 (a
rb

. u
.)

1

0

time delay (µs)
-200 2000

ev
en

ts
 (a

rb
. u

.)

1

0

time delay (µs)
-200 2000

ev
en

ts
 (a

rb
. u

.)

1

0

time delay (µs)
-200 2000

Figure 6. Comparison of different histogram calculations. Event streams (a), corresponding histograms (b),
and exemplary data using fluorescence from a quantum dot (c) for, from left to right, start-stop analysis,
start-stop with reset, and correlation with up to 6 neighbours.

Real-time and multi-threading support. ETA allows processing new data while displaying and
updating the result of the already evaluated data, which we call real-time analysis. Time-tag data can
be streamed into ETA in segments for real-time analysis. Due to the nature of ETA, those features
are implemented in the compiling stage and in a recipe-agnostic manner. This means real-time
analysis can be enabled simply via the Script Panel in any type of ETA Recipe. It is provided with
the built-in lifetime and correlation Recipes. The data can either be read from a file, while it is still
being written or can be read-in directly from the time-to-digital converter. ETA will perform the
analysis by automatically pausing and resuming as new data become available. In both cases, either
the full time-tag file or only the analyzed data can be stored. This mode is often used for direct
evaluation of a single-photon detector in an oscilloscope-like fashion. With this, a single-photon
detector can, in many scenarios, replace a high-speed photo-diode, an important advantage when
measuring very weak light intensities.

Previously stored data files can also be cut into smaller segments for faster parallel processing
in a MapReduce [44] style method, in which the segments are analyzed individually into histograms
(map stage), and aggregated with a user-specified method, usually a simple sum or concatenate
(reduce stage). This can be useful to generate a quick preview of the analysis result at the cost of
losing correlations between events across different segments.

3.2 Simulation

By using the emit() function in the Instrument Designer it is possible to create a custom time-tag
file in memory or even on disk. To showcase this functionality, we create a stream of separated
events suitable to simulate a pulsed 𝑔 (2) (𝑡) measurement with 100 % efficiency. The first Virtual
Instrument, shown in figure 7a and 7 b, contains just one state with an initial-state marker, since that
is the minimum requirement, and uses emit(0, 0, 12496, 4.8E9) to create an event on channel 1
with 0 ps delay every 12 496 ps, 4.8 × 109 times, resulting in 60 s of 80 MHz sync pulses. We then

– 10 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

a) b)

c) d)

e) f)

Figure 7. Simulation of time-correlation data. (a) State diagram for the generation of the sync with just
the minimum requirements. (b) Actions and Tools panel for the generation of the sync with emit(channel,
delay,repetition_time,number_of_repetitions). (c) State diagram for the simulation of a single-photon
emitter. (d) Actions and Tools for a delay randomly picked from an exponentially decaying distribution. (e)
State diagram for a beam splitter triggered by the decay of the single-photon emitter. (f) Actions and Tools
for the simulated beam splitter with a 50:50 choice of which output channel is used.

create a second Virtual Instrument, shown in figure 7c and 7d, with two states: a state called “g”,
representing the ground state and a state called “X” representing the excited state. On an event on
channel 0, the ground state can be excited and upon arriving at “X” a delayed emission on channel 1
is triggered that will cause a return to the state “g”. To generate this random delay, we make use of
the embedded code block, where we can use all functions supported by the Numba compiler. By
sampling from an exponential probability distribution, we can simulate the emission of a two-level
system. emit(1,x_delay) is then called to create a virtual stream of single-photon-like events. In
a third Virtual Instrument we pick up this stream with a transition from a single state looping to
itself, by choosing the virtual channel 1 we just created. We then use another embedded code block
to randomly choose between emitting on channel 2 or 3 with equal probability to mimic a 50:50
beam splitter. We can now correlate channel 2 and 3 as we did in section 3.1. A more sophisticated
version of a quantum emitter simulation Recipe is included with the software. Figure 8 shows the
result of this simulation, comparing correlation (top panel), start-stop analysis (middle panel) and
start-stop analysis with reset of the clock upon consecutive events on the start channel (bottom
panel). The start-stop method with reset only shows a single side-peak in each direction of the time
delay since no event can be reused which would be necessary for a correlation analysis.

– 11 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

0

20

0

20

ev
en

ts
 (k

ct
s)

-100 -75 -50 -25 0 25 50 75 100
time delay (ns)

0

20

correlation

start-stop

start-stop with reset

Figure 8. Simulated single-photon emission with 100 % efficiency in generation, collection, routing and
detection. The top panel shows a full correlation, the middle panel shows a start-stop analysis and the bottom
panel shows a start-stop analysis where the start is reset when consecutive photon events are registered on
the same channel.

4 Conclusion

This software was developed with time-correlated single photon counting in mind. This technique
is used in, among others, fluorescence microscopy and quantum optics, but is certainly not limited
to these use cases. Analysis of time-tagged files instead of start-stop measurements allows for the
extraction of as much information as possible from a single experiment, resulting in important
time savings. Due to ETA’s user-friendliness, it can also reduce the time spent on programming
the analysis of recorded data. The program can perform novel analysis that are yet to be defined
while remaining fast and robust. Large numbers of detectors, such as in Boson sampling [45] and
ambitious linear optics quantum computation schemes [46] with associated large file sizes pose no
problem for our software. The support of data from multiple time-taggers and from a multitude of
vendors allows for use cases where the correlation of signals from remote sources, like in quantum
key distribution, needs to be performed. Even simulation of time series data is possible due to
the flexibility. A vast number of research fields could benefit from using our software due to time
savings and unlocked potential.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No. 820423 (S2QUIP) and No. 899814 (Qurope), the Knut and
Alice Wallenberg Foundation grant “Quantum Sensors”, the European Research Council (307687
(NaQuOp)), the Joint China-Sweden Mobility programme (STINT), the Swedish Research Council
(VR) through the VR grant for international recruitment of leading researchers (Ref: 2013-7152),
and Q-LID Quantum Light Detectors (Ref: 2018-04251). K.D.J. acknowledges funding from the

– 12 –

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

Swedish Research Council (VR) via the starting grant HyQRep (ref.: 2018-04812) and The Göran
Gustafsson Foundation (SweTeQ).

Data sharing policy. Data sharing is not applicable to this article as no new data were created or
analyzed in this study.

References

[1] M.B. Priestley, Spectral analysis and time series, Probability and Mathematical Statistics, Elsevier,
London, U.K. (1982).

[2] I.E. Zadeh et al., Efficient single-photon detection with 7.7 ps time resolution for photon-correlation
measurements, ACS Photon. 7 (2020) 1780.

[3] B. Korzh et al., Demonstration of sub-3 ps temporal resolution with a superconducting nanowire
single-photon detector, Nature Photon. 14 (2020) 250.

[4] L.M. Bollinger and G.E. Thomas, Measurement of the time dependence of scintillation intensity by a
delayed-coincidence method, Rev. Sci. Instrum. 32 (1961) 1044.

[5] P. Kapusta, M. Wahl and R. Erdmann eds., Advanced photon counting: applications, methods,
instrumentation, Springer, Cham, Switzerland (2015).

[6] J. Shan and C.K. Toth, Topographic laser ranging and scanning: principles and processing, CRC
Press, Taylor & Francis Group, (2018).

[7] M. Herrero-Collantes and J.C. Garcia-Escartin, Quantum random number generators, Rev. Mod.
Phys. 89 (2017) 015004.

[8] C.J. Chunnilall, I.P. Degiovanni, S. Kück, I. Müller and A.G. Sinclair, Metrology of single-photon
sources and detectors: a review, Opt. Eng. 53 (2014) 081910.

[9] C.A. Kocher and E.D. Commins, Polarization correlation of photons emitted in an atomic cascade,
Phys. Rev. Lett. 18 (1967) 575.

[10] Y.H. Shih and C.O. Alley, New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light
quanta produced by optical parametric down conversion, Phys. Rev. Lett. 61 (1988) 2921.

[11] D.M. Greenberger, M.A. Horne and A. Zeilinger, Going beyond Bell’s theorem, in Bell’s theorem,
quantum theory and conceptions of the universe, M. Kafatos ed., Springer, Dordrecht, The
Netherlands (1989), pg. 69.

[12] H.J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev.
Lett. 86 (2001) 910.

[13] R.H. Brown and R.Q. Twiss, Correlation between photons in two coherent beams of light, Nature 177
(1956) 27.

[14] G.A. Steudle et al., Measuring the quantum nature of light with a single source and a single detector,
Phys. Rev. A 86 (2012) 053814.

[15] G.W. Roberts and M. Ali-Bakhshian, A brief introduction to time-to-digital and digital-to-time
converters, IEEE Trans. Circuits Syst. II, Exp. Briefs2 57 (2010) 153.

[16] M. Zopf et al., Entanglement swapping with semiconductor-generated photons violates Bell’s
inequality, Phys. Rev. Lett. 123 (2019) 160502.

– 13 –

https://doi.org/10.1021/acsphotonics.0c00433
https://doi.org/10.1038/s41566-020-0589-x
https://doi.org/10.1063/1.1717610
https://doi.org/10.1007/978-3-319-15636-1
https://doi.org/10.1103/revmodphys.89.015004
https://doi.org/10.1103/revmodphys.89.015004
https://doi.org/10.1117/1.oe.53.8.081910
https://doi.org/10.1103/PhysRevLett.18.575
https://doi.org/10.1103/PhysRevLett.61.2921
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/10.1103/physrevlett.86.910
https://doi.org/10.1103/physrevlett.86.910
https://doi.org/10.1038/177027a0
https://doi.org/10.1038/177027a0
https://doi.org/10.1103/physreva.86.053814
https://doi.org/10.1109/tcsii.2010.2043382
https://doi.org/10.1103/physrevlett.123.160502

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

[17] F.B. Basset et al., Entanglement swapping with photons generated on demand by a quantum dot, Phys.
Rev. Lett. 123 (2019) 160501.

[18] R. Ursin et al., Entanglement-based quantum communication over 144 km, Nature Phys. 3 (2007) 481.

[19] L.K. Shalm, D.R. Hamel, Z. Yan, C. Simon, K.J. Resch and T. Jennewein, Three-photon energy-time
entanglement, Nature Phys. 9 (2012) 19.

[20] A. Delteil, Z. Sun, W.-B. Gao, E. Togan, S. Faelt and A. Imamoğlu, Generation of heralded
entanglement between distant hole spins, Nature Phys. 12 (2015) 218.

[21] M. Reindl et al., All-photonic quantum teleportation using on-demand solid-state quantum emitters,
Science Adv. 4 (2018) eaau1255.

[22] E. Schöll et al., Resonance fluorescence of GaAs quantum dots with near-unity photon
indistinguishability, Nano Lett. 19 (2019) 2404.

[23] PicoQuant GmbH, Time-resolved fluorescence software wiki, https://perma.cc/FGT9-RD7T,
September 2020.

[24] I. Aharonovich, D. Englund and M. Toth, Solid-state single-photon emitters, Nature Photon. 10
(2016) 631.

[25] W. Becker, Fluorescence lifetime imaging — techniques and applications, J. Microscopy 247 (2012)
119.

[26] G. Buller and A. Wallace, Ranging and three-dimensional imaging using time-correlated
single-photon counting and point-by-point acquisition, IEEE J. Sel. Top. Quant. Electron. 13 (2007)
1006.

[27] S.J. Freedman and J.F. Clauser, Experimental test of local hidden-variable theories, Phys. Rev. Lett.
28 (1972) 938.

[28] K.D. Greve et al., Quantum-dot spin-photon entanglement via frequency downconversion to telecom
wavelength, Nature 491 (2012) 421.

[29] W.B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez and A. Imamoglu, Observation of entanglement
between a quantum dot spin and a single photon, Nature 491 (2012) 426.

[30] M. Böhmer, F. Pampaloni, M. Wahl, H.-J. Rahn, R. Erdmann and J. Enderlein, Time-resolved
confocal scanning device for ultrasensitive fluorescence detection, Rev. Sci. Instrum. 72 (2001) 4145.

[31] C.H. Bennett and G. Brassard, Quantum cryptography: public key distribution and coin tossing, in
Proceedings of IEEE international conference on computers, systems and signal processing,
volume 175, Bangalore, India, January 1984, pg. 8 [Theor. Comput. Sci. 560 (2014) 7].

[32] J. Yin et al., Entanglement-based secure quantum cryptography over 1, 120 kilometres, Nature 582
(2020) 501.

[33] D. Knuth, The art of computer programming, Addison-Wesley, U.S.A. (1968).

[34] C.A.R. Hoare, Algorithm 64: quicksort, Commun. ACM 4 (1961) 321.

[35] T. Bischof, Photon correlation, https://github.com/tsbischof/photon_correlation, February 2012.

[36] G. Ballesteros, R. Proux, C. Bonato and B.D. Gerardot, readPTU: a python library to analyse time
tagged time resolved data, 2019 JINST 14 T06011 [arXiv:1903.07112].

[37] S.K. Lam, A. Pitrou and S. Seibert, Numba: a LLVM-based python JIT compiler, in Proceedings of
the second workshop on the LLVM compiler infrastructure in HPC — LLVM ′15, ACM press, (2015).

– 14 –

https://doi.org/10.1103/physrevlett.123.160501
https://doi.org/10.1103/physrevlett.123.160501
https://doi.org/10.1038/nphys629
https://doi.org/10.1038/nphys2492
https://doi.org/10.1038/nphys3605
https://doi.org/10.1126/sciadv.aau1255
https://doi.org/10.1021/acs.nanolett.8b05132
https://perma.cc/FGT9-RD7T
https://doi.org/10.1038/nphoton.2016.186
https://doi.org/10.1038/nphoton.2016.186
https://doi.org/10.1111/j.1365-2818.2012.03618.x
https://doi.org/10.1111/j.1365-2818.2012.03618.x
https://doi.org/10.1109/jstqe.2007.902850
https://doi.org/10.1109/jstqe.2007.902850
https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1103/PhysRevLett.28.938
https://doi.org/10.1038/nature11577
https://doi.org/10.1038/nature11573
https://doi.org/10.1063/1.1406926
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1038/s41586-020-2401-y
https://doi.org/10.1038/s41586-020-2401-y
https://doi.org/10.1145/366622.366644
https://github.com/tsbischof/photon_correlation
https://doi.org/10.1088/1748-0221/14/06/T06011
https://arxiv.org/abs/1903.07112
https://doi.org/10.1145/2833157.2833162

2
0
2
1

J
I
N
S
T

1
6

T
0
8
0
1
6

[38] C. Lattner and V. Adve, LLVM: a compilation framework for lifelong program analysis &
Transformation, in Proceedings of the international symposium on code generation and optimization:
feedback-directed and runtime optimization, CGO ′04, IEEE computer society, U.S.A., March 2004,
pg. 75.

[39] H.J. Kimble, M. Dagenais and L. Mandel, Photon antibunching in resonance fluorescence, Phys. Rev.
Lett. 39 (1977) 691.

[40] D. Magde, E. Elson and W.W. Webb, Thermodynamic fluctuations in a reacting system-measurement
by fluorescence correlation spectroscopy, Phys. Rev. Lett. 29 (1972) 705.

[41] W.E. Moerner and D.P. Fromm, Methods of single-molecule fluorescence spectroscopy and
microscopy, Rev. Sci. Instrum. 74 (2003) 3597.

[42] R.M. Dickson, A.B. Cubitt, R.Y. Tsien and W.E. Moerner, On/off blinking and switching behaviour of
single molecules of green fluorescent protein, Nature 388 (1997) 355.

[43] F. Davidson and L. Mandel, Photoelectric correlation measurements with time-to-amplitude
converters, J. Appl. Phys. 39 (1968) 62.

[44] J. Dean and S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM
51 (2008) 107.

[45] H. Wang et al., Boson sampling with 20 input photons and a 60-mode interferometer in a
1014-dimensional Hilbert space, Phys. Rev. Lett. 123 (2019) 250503.

[46] E. Knill, R. Laflamme and G.J. Milburn, A scheme for efficient quantum computation with linear
optics, Nature 409 (2001) 46.

– 15 –

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1103/physrevlett.39.691
https://doi.org/10.1103/physrevlett.39.691
https://doi.org/10.1103/physrevlett.29.705
https://doi.org/10.1063/1.1589587
https://doi.org/10.1038/41048
https://doi.org/10.1063/1.1655781
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1103/physrevlett.123.250503
https://doi.org/10.1038/35051009

	Introduction
	Software description
	Software architecture
	User interface (front end)
	Execution of analysis recipe (back end)

	Illustrative examples
	Lifetime, start-stop, and correlation analysis
	Simulation

	Conclusion

