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ABSTRACT

Superconducting nanowires have emerged as a powerful tool for detecting single photons in the visible and near-infrared range with excellent
device performance metrics. We outline challenges and future directions related to the up-scaling of nanowire devices and detector systems
toward widespread applications in demanding real-world settings. Progress on achieving superconducting single-photon detectors with a
large active area and an increasing number of pixels is reviewed, comparing the recent literature in terms of the reported key detector
parameters. Furthermore, we summarize currently available readout and multiplexing schemes for multi-pixel detector arrays and discuss
implications of the recently discovered microwire-based detector geometries.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0044057

Detecting light down to the single-photon level has enabled sci-
entific discoveries and new technological applications. Although vari-
ous types of detectors are available depending on the desired
wavelength range, performance requirements, and operation condi-
tions (see Ref. 1 for a comparison), the development of photosensitive
devices remains an active field of research, pursuing the quest for
achieving a single-photon detector with ideal characteristics.
Photomultiplier tubes (PMTs) have the distinct advantage of offering
large detection areas but show significant limitations related to their
detector performance parameters, high operation voltages, and bulky
packaging. Single-photon avalanche diode (SPAD) technology has
considerably advanced in the past few decades and can be fully inte-
grated with micro-optics as well as readout circuits. Various types of
large-scale SPAD arrays have been reported, including kilopixel devi-
ces based on III–V semiconductors2,3 and Si-based megapixel arrays.4

In terms of detector performance, superconducting nanowire
single-photon detectors (SNSPDs)5 stand out due to close-to-unity
detection efficiency,6 picosecond time resolution,7 short recovery times
down to the sub-nanosecond regime,8 and low noise with milli-hertz
dark count rates.9 This technology has rapidly evolved from the first
demonstration in 200110 to high-performance commercial products
available to date, providing single-pixel detectors coupled to standard
optical fibers in customized cryostats. Moreover, SNSPDs coupled to
optical waveguides in photonic integrated circuits11 have shown excel-
lent capabilities for on-chip single-photon detection, which offers

significant potential for the scalable realization of arrays with high
integration density.

So far, SNSPDs have been primarily used in research and
development, for instance, in the field of quantum optics
where they attracted considerable attention for applications in
quantum communication and quantum computing,12 e.g., for the
long-range distribution of quantum keys13 and polarization
entanglement.14 Other applications include space communica-
tion,15 fluorescence lifetime measurements,16 singlet oxygen lumi-
nescence detection,17,18 as well as light detection and ranging
(LIDAR) with near-infrared photons, which has been employed
for imaging objects,19–21 for satellite ranging,22 and for characteriz-
ing sea fog.23 Although these demonstrations validate the high
practical relevance of SNSPDs, further advances will be required to
enable the widespread use of this photodetector technology in
demanding industrial, clinical, or environmental settings. Similar
to PMT and SPAD technologies, future developments will need to
follow a trajectory that enables a drastic increase in the active area
and number of pixels combined with improvements in terms of
system-level integration. In this perspective, we summarize recent
progress on the up-scaling of SNSPD devices and detector systems,
providing an overview of the relevant readout and multiplexing
schemes. Additionally, we share our viewpoint on key future devel-
opments that will allow for the adoption of SNSPDs in real-world
applications beyond the optics laboratory.
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Typical SNSPD devices offer active areas in the 10 lm diameter
range allowing for efficient coupling to single-mode optical fibers (see
Refs. 24 and 25 for considerations related to optical interfaces and cou-
pling). They consist of a meandering nanowire (width on the order of
100nm) fabricated from a superconducting thin film (thickness
�5–10nm) with electron beam lithography and reactive ion etching.
Due to the nanoscale geometries, the realization of SNSPDs covering
large areas requires a high level of uniformity of the superconducting
material and of the processing steps, which has limited the up-scaling
and yield on the single-device level. This challenge has been addressed
by continuous improvements in nanofabrication and material growth
techniques. Magnetron sputtering is most commonly used to deposit
nanocrystalline (e.g., NbN and NbTiN) and amorphous (e.g., WSi and
MoSi) thin films. Excellent yield and reproducibility were also demon-
strated for NbN thin films deposited by plasma-enhanced atomic layer
deposition,26 confirming the substantial potential of this deposition
technique for upscaling SNSPD technology. Amorphous superconduc-
tors are often considered favorable in terms of uniformity for achiev-
ing SNSPDs with high yield and consistent properties; nevertheless,
significant advances in up-scaling the active detector area have also
been achieved for nanocrystalline materials.

Larger circular single-pixel SNSPDs with diameters of 50lm
were fabricated and coupled to multimode optical fibers achieving sys-
tem detection efficiencies exceeding 80% for 850nm (NbN)27 and
1550nm (NbTiN),28 while maintaining a low timing jitter below 20 ps
in the latter case. The authors of Ref. 29 realized circular NbN-based
single-pixel SNSPDs with a diameter of 100lm coupled to a multi-
mode fiber with 105lm core diameter, resulting in a detection effi-
ciency of 65% at 532 nm. An SNSPD device with an area of 400� 400
lm2 was reported in Ref. 30, exhibiting saturated intrinsic quantum
efficiency at 1550nm. Scaling up SNSPDs at the single-device level
even further would be possible but is linked with long detector recov-
ery times due to large kinetic inductance and, hence, limited suitability
for high count rates. Consequently, large active area detectors have
been realized with alternative device designs based on multi-pixel con-
figurations (to be discussed in detail below) and on nanowire networks
to reduce the kinetic inductance31 (superconducting nanowire ava-
lanche single-photon detectors, SNAPs). Large-area SNSPDs suitable
for coupling to multimode optical fibers have important technological
relevance in multiple application areas ranging from LIDAR to astron-
omy and biological imaging. As coupling optical instruments to multi-
mode fibers is significantly less challenging than to single-mode fibers,
SNSPD technology can be adopted for a much larger range of experi-
ments, optical setups, and existing laboratory infrastructure.
Furthermore, industrial use cases in demanding environments, where
optical setups are subjected to, e.g., temperature variations and vibra-
tions, will greatly benefit from employing multimode fibers in robust
coupling schemes. As a result, we anticipate that SNSPDs will comple-
ment or replace other technologies for high-performance photodetec-
tor applications in the future, providing scientists and engineers with
unmatched device performance metrics in wavelength regimes not
accessible otherwise.

Figure 1(a) shows an SNSPD with 300lm diameter and nine
pixels, which in turn consists of two SNAP devices connected in
series.32 Using a 200lmmultimode fiber, a total system detection effi-
ciency of 42% at 1064nm was reported, achieving a maximum count
rate exceeding 43MHz. The implementation of superconducting

single-photon detectors consisting of multiple pixels does not only
alleviate the problem of long dead times for large active areas but also
offers opportunities for enhanced functionality including correlation
measurements, pseudo-photon number resolution (PNR), and
imaging. The authors of Ref. 33 realized four-pixel multimode fiber-
coupled detectors suitable for photon correlation experiments,
demonstrated by measuring anti-bunching of photon emission from a
quantum light source. PNR was shown via spatial multiplexing with
multiple nanowires,34 for instance, with a series array of 12 nanowire
elements,35 16 interleaved nanowires interfaced individually,36 and
24 nanowire pixels in a series configuration37 for the simultaneous
detection of up to 12, 16, and 24 photons, respectively. Electrical and
optical crosstalk constitute additional challenges for multi-pixel con-
figurations that need to be taken into account in the detector system
design. Multi-element SNSPDs capable of crosstalk-free operation
were demonstrated,38,39 as well as four-element PNR detectors main-
taining sub-30-ps timing resolution.40

The increasing number of pixels requires the development of
multiplexing schemes to minimize the number of coaxial connections
and, thereby, the heat load on the cryogenic system. The heat load of a
single coaxial line to the 4K stage of a closed cycle cryocooler is on the
order of 1 mW,41 which renders the realization of a kilopixel array
consisting of individually connected SNSPDs unfeasible considering
the cooling power of commercially available products. The use of cryo-
genic amplifiers that are commonly employed to reduce the SNSPD
timing jitter further aggravates this problem. Moreover, such multi-
plexing schemes need to be compatible with the requirements of exter-
nal readout electronics such as amplification, counting, and time-to-
digital conversion modules.42 Frequency multiplexing of 16-pixel
SNSPDs has been reported, enabling the individual biasing and read-
out of each pixel employing only one common microwave feed line
with a timing jitter of 59 ps.43 In addition, Single Flux Quantum (SFQ)
logic can be used to readout SNSPDs44,45 and to encode spatial pixel
information, which was shown for an array of 64 SNSPDs maintaining
a timing jitter of 57 ps.46 Figure 1(b) shows a kilopixel SNSPD array,
the largest to date with 1.6� 1.6mm2 area, which was used for single-
photon imaging relying on a row-column readout scheme and
64-channel time-tagging electronics.47 An alternative row-column
readout scheme based on thermal coupling was proposed, mitigating
the problem of current re-distribution within the array and requiring
less wiring/circuit elements.48 Figure 1(c) demonstrates time
multiplexed readout with a nanowire delay line, resulting in single-
photon imaging capabilities with �590 effective pixels. The arrival
time difference of the voltage pulses at both sides of the device is evalu-
ated to extract the position of the photon detection event.49 While
current limitations for detecting multi-photon events need to be
addressed in the future, the excellent scalability of SNSPD technology
is highlighted by these examples. Furthermore, the recent demonstra-
tion of photonic SNSPD readout offers another promising prospect of
operating a large number of pixels as optical fibers provide high band-
width densities, minimized electromagnetic interference, and signifi-
cantly reduced heat load to the cryostat due to their low thermal
conductivity compared to coaxial cables.50

While device upscaling has been proven to be challenging but
feasible for wavelengths up to the telecom range, the realization of
SNSPDs operating further in the infrared places even more stringent
requirements on material growth and nanofabrication. Detectors

Applied Physics Letters PERSPECTIVE scitation.org/journal/apl

Appl. Phys. Lett. 118, 100501 (2021); doi: 10.1063/5.0044057 118, 100501-2

VC Author(s) 2021

https://scitation.org/journal/apl


capable of detecting wavelengths of 2lm and beyond are commonly
linked with small nanowire widths down to 30 nm.51 It remains an
open question how the current device technology needs to be
improved to achieve large-scale SNSPDs for mid-infrared detection;
thus, future developments will rely not only on technological advances
but also on new fundamental insights into the detector working princi-
ples. The recent demonstration of superconducting single-photon
detectors based on microwires52 came as a surprise to the scientific
community and has questioned prevailing paradigms on the detection
process. The following reports53,54 showed large-area detectors with
saturated intrinsic quantum efficiencies at telecom wavelengths
[Ref. 53: 400� 400lm2; Ref. 54: 362� 362 lm2, see Fig. 1(d)] and
microstrip structures with comparatively low timing jitter around 40
ps.55 While microwire-based devices seem to critically rely on super-
conducting thin films with tailored properties, they are highly appeal-
ing from an industrial perspective as they could be realized with high-
throughput optical lithography systems. In addition, the properties of
microwire devices will likely allow the community to learn more about
the physics of SNSPDs, which will be crucial for the rational design of
large-scale superconducting single-photon detectors operating far in
the mid-infrared.

To conclude, recent years have shown significant progress in
developing SNSPD devices and systems with increased active areas
and pixel numbers, which is summarized in Fig. 2 and Table I. These

FIG. 2. Large-area and multi-pixel superconducting single-photon detectors are
compared by the number of pixels and total detection area. Microwire-based devi-
ces are marked with ‡. The devices are color-coded by their readout scheme: indi-
vidual device readout (ID), row-column readout (RC), time multiplexing (TM),
frequency multiplexing (FM), and SFQ-based logic (SFQ). Further details are tabu-
lated in Table I.

FIG. 1. (a) Superconducting nanowire single-photon detector (SNSPD) device with a 300lm diameter and nine pixels, suitable for coupling to multimode optical fibers with a
large core diameter combined with high maximum count rates. Reproduced with permission from Zhang et al., AIP Adv. 9, 075214 (2019). Copyright 2019 Author(s), licensed
under a Creative Commons Attribution (CC BY) License. (b) SNSPD array with 1024 pixels and 1.6� 1.6 mm2 area realized in a row-column multiplexing architecture. A 64-
channel time-tagging readout was implemented and imaging of a focused laser spot was demonstrated. Reproduced with permission from Wollman et al., Opt. Express 27,
35279–35289 (2019). Copyright 2019 Optical Society of America. (c) Superconducting nanowire delay line for single-photon imaging resolving �590 effective pixels.
Reproduced with permission from Zhao et al., Nat. Photonics 11, 247–251 (2017). Copyright 2017 Springer Nature. (d) Large-area SNSPD based on 3 lm microwire with a
400� 400 lm2 active area. Reproduced with permission from Charaev et al., Appl. Phys. Lett. 116, 242603 (2020). Copyright 2020 AIP Publishing LLC.
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developments were enabled by combined effort in nanofabrication,
materials science, device design, photonics engineering, and cryogen-
ics. Future improvements in multiplexing and readout schemes will
allow for the operation of massive numbers of pixels while preserving
near-ideal detector performances. We expect multiple emerging appli-
cations to benefit from further advances in large-scale superconduct-
ing single-photon detector systems due to their unmatched
performances for detection and imaging over a large spectral range. In
addition to their high industrial relevance, SNSPDs with a large active
detection area will serve as essential tools for scientists tackling
unsolved fundamental questions in quantum optics and beyond, such
as the detection of dark matter.30
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